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What will we learn?

––

 

Sea of the proton and of nucleiSea of the proton and of nuclei

–

 

High-x

 

valence distributions
–

 

Partonic energy loss in cold 
nuclear matter

What will we measure?

How will we measure it?
– Spectrometer upgrade
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What is the distribution of 
sea quarks?

In the nucleon:


 

Sea and gluons are 
important:
–

 

98% of mass; 60% of 
momentum at Q2

 

= 2 GeV2



 

Not just three valence quarks and QCD.  
Shown by E866/NuSea d-bar/u-bar data



 

What are the origins of the sea?


 

Significant part of LHC beam.

CTEQ6m

In nuclei:


 

The nucleus is not just protons and neutrons


 

What is the difference?  
–

 

Bound system
–

 

Virtual mesons affects antiquarks distributions
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Simple view of parton distributions:  
A historic approach



 

Constituent Quark/Bag Model 
motivated valence approach
–

 

Use valence-like (primordial) quark 
distributions at some very low scale, Q2, 
perhaps a few hundred MeV

–

 

Radiatively generate sea and glue.   
Gluck, Godbole, Reya, ZPC 41 667 (1989)



 

It was quickly realized that some 
valence-like (primordial) sea was 
needed. Gluck, Reya, Vogt, ZPC 53, 127 (1992)

–

 

Driven by need to agree with 
BCDMS and EMC data

–
 

Assumption of symmetric sea 
remained

g q

q

u
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Light Antiquark Flavor Asymmetry:  Brief History



 

Naïve Assumption:



 

NMC (Gottfried Sum Rule)
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NMC (Gottfried Sum Rule)

Light Antiquark Flavor Asymmetry:  Brief History



 

Naïve Assumption:

NA 51 Drell-Yan 
confirms 

d-bar(x) > u-bar(x)
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Light Antiquark Flavor Asymmetry:  Brief History


 

Naïve Assumption:



 

NA51 (Drell-Yan)



 

E866/NuSea (Drell-Yan)



 

NMC (Gottfried Sum Rule)



 

Knowledge of distributions is 
data driven
–

 

Sea quark distributions are 
difficult for Lattice QCD
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Proton Structure:  By What Process Is the Sea Created?



 

There is a gluon splitting 
component which is symmetric  



–

 

Symmetric sea via pair 
production from gluons 
subtracts off

–

 

No Gluon contribution at 1st

 order in s

–

 

Nonperturbative models are 
motivated by the observed 
difference



 

A proton with 3 valence quarks 
plus glue cannot be right at any 
scale!!
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Models Relate Antiquark Flavor Asymmetry and Spin


 

Meson Cloud in the nucleon—Sullivan process in DIS

d̄(x) − ū(x) ≈ ∆ū(x) − ∆d̄(x)

d̄I(x)− ūI(x) = 3

5
[∆uI(x)−∆dI(x)]

Z 1

0

£
d̄(x)− ū(x)¤ = 2a− b

3
= 0.10→ a = 0.2 = 2b gA =

Z 1

0

[∆u−∆d] dx = 5

3
−20
27

√
2ab→ 1.5

Z 1

0

£
d̄(x) − ū(x)¤ = 2a

3
= 0.10→ a = 0.14 gA =

Z 1

0
[∆u −∆d] dx = 5

3
3a→ 1.43

hq|qi =
∙
1− 3a

2

¸
hq|qi+ 3a

2
hqπ|qπi



 

Chiral Quark models—effective Lagrangians

L ∝ ūRuLd̄RdL + ūLuRd̄LdR



 

Instantons



 

Statistical Parton Distributions

hP |P i = (1− a− b) hP0|P0i+ ahN0π|N0πi+ bh∆0π|∆0πi . . .
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Something is missing



 

All non-perturbative models predict large asymmetries at high x.



 

Are there more gluons and therefore symmetric anti-quarks at 
higher x?



 

Does some mechanism like instantons have an unexpected x 
dependence? (What is the expected x dependence for instantons 
in the first place?) 
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Proton Structure:  By What Process Is the Sea Created?


 

Meson Cloud in the nucleon
Sullivan process in DIS
|pi

 

= |p0i
 

+ 

 

|Ni
 

+ |i
 

+ . . .



 

Chiral Models
Interaction between Goldstone 
Bosons and valence quarks
|ui→|d+i

 

and |di→|u-i

Perturbative 
sea apparently 
dilutes meson 

cloud effects at 
large-x
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xtarget xbeam

Detector acceptance chooses xtarget

 

and xbeam

 

.
Fixed target ⇒ high xF

 

= xbeam

 

– xtarget

Valence Beam quarks at high-x.
Sea Target quarks at low/intermediate-x.

Drell-Yan scattering:  
A laboratory for sea quarks

E90
6 S

pe
ct.

 

Mon
te 

Carl
o
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Drell-Yan Scattering:  What we really measure


 

Measure yields of +-

 pairs from different  targets



 

For each event measure 
3-momentum of each 



 

Assume that it is a muon 
to get 4-momentum



 

Reconstruct M2


 

, pT
, p||





 

M2


 

= x1

 

x2

 

s, 


 

xF

 

= 2p||
/s1/2

 

≈

 

x1

 

– x2
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Drell-Yan Mass Spectra



1417 March 2008 Paul E. Reimer

Fermilab E866 Detector
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Extracting d-bar/-ubar From Drell-Yan Scattering



 

E906/Drell-Yan will extend 
these measurements and 
reduce  statistical 
uncertainty.



 

E906 expects systematic 
uncertainty to remain at 
approx. 1% in cross 
section ratio.
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Advantages of 120 GeV Main Injector
The (very successful) past:  

Fermilab E866/NuSeaFermilab E866/NuSea


 

Data in 1996-1997


 

1H, 2H, and nuclear targets


 

800 GeV proton beam

The future: 

Fermilab E906Fermilab E906


 

Data in 2009


 

1H, 2H, and nuclear targets


 

120 GeV proton Beam



 

Cross section scales as 1/s 
–

 

7× that of 800 GeV beam



 

Backgrounds, primarily from J/

 decays  scale as s
–

 

7× Luminosity for same 
detector rate as 800 GeV beam

5050××
 

statistics!!statistics!!

Fixed Target 

Beam lines

Tevatron 
800 GeV

Main 
Injector 

120 GeV
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Semi-Inclusive DIS—HERMES, JLab, JLab 12 GeV
–

 

Tag struck quark through leading hadron
–

 

Must understand fragmentation
–

 

HERMES may reduce statistical uncertainty but will 
still have significant systematic uncertainty (small 
differences between large numbers)

Other Possible Measurements of d-bar—u-bar  
asymmetry



 

Drell-Yan—JPARC
–

 

Initial phase of JPARC is 30 GeV—sufficient only for J/

 

studies, no Drell-Yan 
(no phase space for events above J/)

–

 

JPARC Phase II—50 GeV 
• great possibilities for polarized Drell-Yan
• Berger criteria for nuclear targets—insufficient energy for heavy A
• No partonic energy loss studies—xbeam

 

-xtarget

 

correlations
• Experimental issues:  pT

 

acceptance, ±

 

decay in flight background

–

 

Physics Program cannot be reached by 30 GeV machine 
(physics program strongly endorsed)
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Structure of nucleonic matter: 
How do sea quark distributions differ in a nucleus?

Comparison with 
Deep Inelastic Scattering (DIS)



 

EMC:  Parton distributions of 
bound and free nucleons are 
different.



 

Antishadowing not seen in Drell-

 
Yan—Valence only effect

Alde et al (Fermilab E772) Phys. Rev. Lett. 64 2479 (1990)
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Kulagin and Petti sea vs. valence nuclear effects

Valence Sea

Nuclear Physics A 765 (2006) 126–187



2217 March 2008 Paul E. Reimer

Structure of nucleonic matter: 
How do sea quark distributions differ in a nucleus?

Intermediate-x
 

seasea
 

PDF’s
 -DIS on iron—Are nuclear 

effects with the weak 
interaction the same as 
electromagnetic?  

Are nuclear effects the 
same for sea and valence 
distributions

What can the sea parton 
distributions tell us about 
the effects of nuclear 
binding?



2317 March 2008 Paul E. Reimer

Structure of nucleonic 
matter: Where are the 
nuclear pions?



 

The binding of nucleons in a 
nucleus is expected to be 
governed by the exchange of 
virtual “Nuclear”

 

mesons.


 

No antiquark enhancement 
seen in Drell-Yan (Fermilab 
E772) data.



 

Contemporary models predict 
large effects to antiquark 
distributions as x increases.



 

Models must explain both Models must explain both 
DISDIS--EMC effect and DrellEMC effect and Drell--YanYan
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Aside:  Rescaling Models in 
Trouble?



 

Prediction of 

 

mass/width 
modification not seen in 
JLab/CLAS data Nasseripour

 

et al.

 
(CLAS) PRL 99, 262302 (2007)
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Drell-Yan Absolute Cross Sections



 

¼

 

of data represented in plot (alternate decades, alternate targets)


 

Last few xF

 

bins show PDF’s “over predict”

 

NLO cross section
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Proton Valence Structure:  Unknown as x→ 1
Theory

•

 

Exact SU(6): d/u → 1/2
•

 

Diquark S=0 dom.:

 

d/u → 0
•

 

pQCD: d/u → 3/7
Data

•

 

Binding/Fermi Motion effects in 
deuterium—choice of treatments.

••

 

Proton data is needed.Proton data is needed.

Petratos et al.
nucl-ex/0010011

Relative Relative 
uncertainty upuncertainty up-- 

quark distribution quark distribution 
(CTEQ6e)(CTEQ6e)

Reality:
We don’t even know the u or d quark 

distributions—there really is very 
little high-x proton data
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Drell-Yan Absolute Cross Sections:  xtarget


 

Reach high-x through beam proton—Large xF⇒ large xbeam

 

.



 

High-x distributions poorly understood
–

 

Nuclear corrections are large, even for deuterium
–

 

Lack of proton data


 

Proton-Proton—no nuclear corrections—4u(x) + d(x)

PRE
LIM

INAR
Y
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Drell-Yan Absolute Cross Sections:  xtarget
Measures a convolution of beam and target PDF


 

absolute magnitude of high-x valence beam distributions


 

absolute magnitude of the sea in the target 
–

 

Currently determined by –Fe DIS

PRE
LIM

INAR
Y
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Partonic Energy Loss


 

An understanding of partonic energy loss in 
both cold and hot nuclear matter is paramount 
to elucidating RHIC data.



 

Pre-interaction parton moves through cold 
nuclear matter and looses energy.



 

Apparent (reconstructed) kinematic values (x1

 
or xF

 

) is shifted


 

Fit shift in x1

 

relative to deuterium


 

Models:
–

 

Galvin and Milana

–

 

Brodsky and Hoyer

–

 

Baier et al.

X1X1
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Partonic Energy Loss


 

E866 data are consistent E866 data are consistent 
with NO partonic energy with NO partonic energy 
loss for all three modelsloss for all three models



 

Caveat:  A correction must 
be made for shadowing 
because of x1

 

—x2

 
correlations
–

 

E866 used an empirical 
correction based on EKS 
fit do DIS and Drell-Yan.

E866/NuSea



 

Treatment of parton propagation length and shadowing are critical
–

 

Johnson et al.

 

find 2.7 GeV/fm (≈1.7 GeV/fm after QCD vacuum effects)
–

 

Same data with different shadowing correction and propagation length


 

Better data outside of shadowing region are necessary.



 

Drell-Yan pT

 

broadening also will yield information
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Parton Energy Loss
Shift in x ∝

 
1/s

–
 

larger at 120 GeV
Ability to distinguish 

between models
Measurements rather 

than upper limits
Energy loss upper limits 

based on E866 Drell-Yan 

measurement
LW10504

E906 expected uncertainties
Shadowing region removed

E906 will have sufficient statistical precision to allow events 
within the shadowing region, x2

 

< 0.1, to be removed from the 
data sample
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Drell-Yan Spectrometer Guiding Principles


 

Follow basic design of MEast spectrometer (don’t reinvent the wheel):



 

Where possible and practical, reuse elements of the E866 spectrometer.
–

 

Tracking chamber electronics (and electronics from E871)
–

 

Hadron absorber, beam dump, muon ID walls
–

 

Station 2 and 3 tracking chambers
–

 

Hodoscope array PMT’s
–

 

SM3 Magnet

E866 Meson East Spectrometer

–

 

Two magnet spectrometer –

 

Hadron absorber within first magnet
–

 

Beam dump within first Magnet –

 

Muon-ID wall before final elements



 

New Elements
–

 

1st

 

magnet (different boost) 
Experiment shrinks from 
60m to 26m

–

 

Sta. 1 tracking (rates)
–

 

Scintillator (age)
–

 

Trigger (flexibility)
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E906 Detector

Trigger electronics

Scintillator 
Hodoscopes
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Drell-Yan Acceptance


 

Programmable trigger 
removes likely J/

 

events


 

Transverse momentum 
acceptance to above 2 
GeV



 

Spectrometer could also 
be used for J/, 0

 

studies

xtarget

xbeam xFMass
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Detector Resolution



 

Triggered Drell-Yan events

240 MeV 
Mass Res.

0.04 x2

 
Res.
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E906/Drell-Yan timeline


 

Fermilab PAC approved the experiment in 2001, but experiment was

 not scheduled due to concerns about “proton economics”


 

Spectrometer upgrade funded by DOE/Office of Nuclear Physics 
(already received $538k in FY07)



 

Fermilab PAC reaffirms earlier decision in Fall 2006


 

Scheduled to run in 2010 for 2 years of data collection

2009

2008

2011 Publications

Expt. 
Funded

2010

Magnet Design Experiment
And construction Construction

Pr
op

os
ed

Ja
n.

 2
00

7 Experiment
Runs

J-PARC

2012



 

Apparatus available for future program at J-PARC
–

 

Significant interest from collaboration for continued program here
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Other Possibilities:  Transversely Polarized Target

Sivers’

 

distribution f⊥1T

 

(x, kT

 

)



 

Single spin asymmetry



 

Possibly explanation for E704 data 


 

Collins Fragmentation function could 
also produce such an asymmetry

Fe
rm

ila
b 

E
70

4,
 P

hy
s.

 R
ev

.
Le

tt.
 7

7,
26

26
 (1

99
6)



 

HERMES has observed both effects in SIDIS


 

With Drell-Yan:  f⊥1T

 

(x, kT

 

)|DIS

 

= - f⊥1T

 

(x, kT

 

)|D-Y



 

With transversely polarized target

 

one measures sea quarks


 

Sea quark effects might be small


 

Transversely polarized beam at J-PARC????
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Other Possibilities:  Pionic Drell-Yan



 

High-x pionic parton distributions
–

 

High-x from of (1-x)

–

 

Specific predictions for 

 

from 
Dyson-Schwinger, pQCD and 
Nambu-Jona-Lasinio models

–

 

Data fall between predictions, but 
may have poor x

 

resolution and 
other systematic effects



 

Charge symmetry violation
–

 

+/-

 

comparison on deuterium target
–

 

Difficulty producing pure +

 

beam
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Leading Order Drell-Yan Angular Distributions: 
d/d ∝ (1+cos2)

q̄
Jz =+1q

μ
− J z=

-1

μ
+

J z=
-1

d111=d
1−1−1=

1
2 (1 + cos θ)

d1−11= d11−1 =
1
2 (1− cos θ)

M ∝ djλ0λ (θ) = hjλ0|e−iθJy |jλi
Helped to validate the Drell- 

Yan picture of quark- 
antiquark annihilation for 

lepton pair production

Fermilab
E866/NuSea

dσ

dΩ
∝M2 ∝ ¡1 + cos2 θ¢
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Generalized Angular Distributions
Chi-Sing Lam and Wu-Ki Tung—basic formula for lepton pair 

production angular distributions PRD 18 2447 (1978)
dσ

d4q dΩ∗k
=
1

2

1

(2π)4
α2

(Ms)2£
WT

¡
1 + cos2 θ

¢
+WL

¡
1− cos2 θ¢

+W∆ sin 2θ cosφ+W∆∆ sin
2 θ cos 2φ

¤
Lam-Tung Relation

Direct analogy to the Callan-Gross relation in DIS
Normally written as

Unaffected by O(s ) (NLO) corrections
NNLO [O(s

2)] corrections also small Mirkes and Ohnemus, PRD 51 4891 (1995)

WL = 2W∆∆

dσ

dΩ
∝ 1 + λ cos2 θ + μ sin 2θ cosφ+

ν

2
sin2 θ cos 2φ

1− λ = 2ν
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Lam-Tung Relation 


 

-

 

Drell-Yan
–

 

Violates

 

L-T relation
–

 

Large

 



 

(cos2) dependence
–

 

Strong with pT



 

Proton Drell-Yan
–

 

Consistent with L-T relation
–

 

No 

 

(cos2) dependence
–

 

No pT

 

dependence



 

With Boer-Mulders

 

function h1┴: 
–

 

ν(π-Wµ+µ-X)
valence h1┴(π)  * valence

 

h1┴(p)
–

 

ν(pdµ+µ-X)
valence h1┴(p) * sea h1┴(p) 
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Drell-Yan at Fermilab
What is the structure of 

the nucleon?
–

 

What is d-bar/u-bar?
–

 

What are the origins of the 
sea quarks?

–

 

What is the high-x structure 
of the proton?

Answers from Fermilab E906/Drell-Yan
–

 

Significant increase in physics reach over previous 
Drell-Yan experiments

–

 

DOE/ONP funded spectrometer

Future possibilities at J-PARC

What is the structure of nucleonic matter?
–

 

Where are the nuclear pions?
–

 

Is anti-shadowing a valence effect?
Do colored partons lose energy in cold 

nuclear matter?
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Additional Material
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Drell-Yan Cross Section Ratio and d-bar/u-bar
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Proton Economics



 

Total of 5.2 ×
 

1018

 

protons (over 2 years)



 

Maximum instantaneous rate of 2 ×
 

1012

 

proton/sec

–

 

Based on E866 experience with target related rate 
dependence—balance systematic and statistical uncertainties

–

 

Station 1 chamber rates.



 

Possible delivery scenario:
–

 

5 sec spill of 1 ×
 

1013

 

protons each minute

–

 

Longer spill (5 sec) desirable over 5-1 sec spills
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Detector Rates

Expected single muon rates per 2×1012

 

protons from decay-in-flight mesons 
which pass through the detector ('s) and satisfy trigger matrix tracking 
requirements (Trks.) from liquid hydrogen and deuterium targets and the 
copper beam dump.
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Next-to-Leading Order Drell-Yan


 

Next-to-leading order diagrams 
complicate the picture



 

These diagrams are 
responsible for 50% of the 
measured cross section



 

Intrinsic transverse momentum 
of quarks (although a small 
effect, > 0.8)
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