
The GENIE framework

Costas Andreopoulos1,2

1University of Liverpool, 2STFC Rutherford Appleton Laboratory

March 10, 2014

Outline

Gabe thought it might be usefull to talk about the GENIE framework.

Despite the fact that GENIE popularity has soared, nobody else had asked
me to give such a talk in the past 5-6 yrs.

I suspect this is probably good

A good framework is one that you do not need to talk about!
Works reliably, allows people to code-up physics and generate events
without having to fight with it.
And typical GENIE users are largely shielded from GENIE internals. I
suspect that most of you, as users, never had to look beyond one of
the built-in user apps.

Yet another 9-hr flight to Chicago in a plane with an entertainment system
from the 70s (thanks AA) allowed me to put together some slides, with the
basics that one needs to know to code-up new models in GENIE.
Can discuss this more throughout the week as we see specific examples.

The UML diagrams shown here were made many yrs ago and may be outdated. Do not use
them as a reference for class method and data member names!

C.Andreopoulos (Liverpool/STFC-RAL) GENIE March 10, 2014 2 / 32

History and Status

GENIE at 2003: O(5,000) lines of code
A bunch of ROOT macros for cross-section calculations

GENIE at 2007: O(100,000) lines of code
First official release, incl. complete C++ framework and physics proven to be fully
equivalent to neugen 3.?, a fortran generator used in MINOS

GENIE at 2014: O(170,000) lines of code
+ Physics improvements, numerous tools for parameter fitting, validation with data,
experimental interfaces, ...

Bulk of GENIE framework devel in 2004-2006. Little change since then.

Very heavily influenced by MINOS work and discussions with Robert Hatcher, George
Irwin, Brett Viren, Sue Kasahara, Nick West and others.

I have changed some of my views on software in the past 10 yrs, I am somewhat less
purist and my Design Patterns book is no longer on the top of the stack.

Although I would have done some things differently, I think that the GENIE framework,
albeit with a bit of clutter around it, is awesome and succesful.

C.Andreopoulos (Liverpool/STFC-RAL) GENIE March 10, 2014 3 / 32

Algorithms

<<ABC>>

Algorithm

-fConfigIsOwned: bool

-fName: string

-fParamSet: string

-fConfig: Registry *

-fStatus: AlgStatus_t

+Configure(in reg:const Registry &)

+Configure(in param_set:string)

+FindConfig()

+GetConfig(): const Registry &

+ParamSet(): string

+GetStatus(): AlgStatus_t

<<pABC>>

DISFormFactorsModelI

<<pABC>>

DecayModelI

<<pABC>>

PDFModelI

<<pABC>>

QELFormFactorsModelI

<<pABC>>

............................

<<pABC>>

SpectralFunctionI

<<pABC>>

HelicityAmplModelI

<<pABC>>

FKRParamsModelI

<<pABC>>

XSecAlgorithmI In GENIE, pretty much everything that
does something to simulate an event has
Algorithm at the root of its inheritance
tree (is an algorithm).

There are very different algorithms
(particle decayers, differential
cross-section models, numerical
integrators) but they all have some things
a common (a system to ID them, a
system to ID their configuration, a system
to access their configuration data etc).
This is defined in the Algorithm base
class.

Then, we have a series of classes which
defines the additional interface methods
required for specific computations (eg
XSecAlgorithmI defines the extra
methods that need to be implemented by
cross-section calculation code). Typically,
you will be subclassing one of these
interface classes and very rarely you would
need to define new interfaces yourself.

C.Andreopoulos (Liverpool/STFC-RAL) GENIE March 10, 2014 4 / 32

Algorithm configuration

Algorithm configurations are read from XML files and are held in named,
type-safe ”parameter” → ”value” maps (Registries).

Notice that the ”Default” configuration on the left specifies
nothing. The default parameter values are obtained from
UserPhysicsOptions.xml, the main configuration file that users
interact with. In general, in algorithm-specific XML files, one
defines configuration parameters only a) to provide non-default
configuration or b) to set parameters we do not expose to the
users (i.e. parameters not specified in UserPhysicsOptions.xml.
Be cautious: Whatever you put there overrides defaults.

Example configurations for PYTHIA6
hadronization algorithm:

C.Andreopoulos (Liverpool/STFC-RAL) GENIE March 10, 2014 5 / 32

Nested algorithms

Crucially, an algorithm configuration can specify other algorithms.

For example, the configuration for the DIS differential cross-section model
specifies a structure function model, a numerical algorithm for
cross-section integration and a hadronization algorithm to help obtain
correction factors in the transition region:

<param type=”alg” name=”SFAlg”>
genie::BYStrucFunc/Default </param>

<param type=”alg” name=”XSec-Integrator”>
genie::DISXSec/Default </param>

<param type=”alg” name=”Hadronizer”>
genie::KNOHadronization/Default </param>

One can build a complex call tree (specify who calls what) entirely using the
configuration files.

You can tweak the call tree without having to recompile.

C.Andreopoulos (Liverpool/STFC-RAL) GENIE March 10, 2014 6 / 32

Algorithm Factory and Configuration Pool

One does not instantiate
algorithms directly, but is using
an Algorithm Factory instead
(Factory design pattern).

You specify the algorithm name
and the configuration name
and you get a configured ‘const
Algorithm *’

An algorithm gets instantiated
when, and only if, you ask for it.

And there is only a single
instance of each algorithm you
ask for (now matter how many
times you ask for it).

To do something usefull, one
typecasts to an object with the
desired interface methods, eg
const XSecAlgorithmI *
xsec alg ptr =
dynamic cast<const
XSecAlgorithmI *> base ptr;

C.Andreopoulos (Liverpool/STFC-RAL) GENIE March 10, 2014 7 / 32

Algorithm Factory and Configuration Pool

Instantiated algorithms and configuration registries are placed in object pools.

XML

XML

XML
Registry

Algorithm

AlgConfigPool

C++

AlgFactory

C.Andreopoulos (Liverpool/STFC-RAL) GENIE March 10, 2014 8 / 32

Algorithm Factory and Configuration Pool

Running a particular configured algorithm usually involves a tree of algorithms and their
corresponding configurations. Any change anywhere is propagated throughout GENIE.

Important to realize the above to avoid changes which could have unintended consequences.

XML

XML

XML
Registry

Algorithm

AlgConfigPool

C++

AlgFactory

C.Andreopoulos (Liverpool/STFC-RAL) GENIE March 10, 2014 9 / 32

Getting a monolithic algorithm block

There may be use cases where it is beneficial to treat the tree of algorithms as a single

algorithm with a single configuration registry (eg fitting a model to data). Such a monolithic

block can be created by invoking the AdoptSubstructure() method at the top level algorithm.

All algorithms are cloned. Instanced of sub-algorithms are stored within the top-level algorithm.

The configuration registries are flattened-out and all configuration variables are placed at the

registry of the top-level algorithm.

C.Andreopoulos (Liverpool/STFC-RAL) GENIE March 10, 2014 10 / 32

Event Generation Framework

Various algorithms (form factor and cross-section models, numerical algorithms,
algorithms handling event record formatting, kinematics generators, particle decayers,
hadronization models, intranuclear cascades) are combined together to form a generator
(will see details next).

Typically, a generator produces a given class of events (eg QE generator, resonance
generator, DIS generator, etc).

Each generator specifies

its validity ranges (under-used, should be usefull in future for splicing models
together),
which processes it can generate,
how to compute the cross-section for these processes,

what are the required steps for fully simulating these processes.

You can run a single generator on its own (but usually not for physics - explain caveats).

For comprehensive neutrino interaction modelling, many generators need to be combined
together.

The default GENIE configuration specifies such a generator combination.

For a given initial state, the main user interface class is called GEVGDriver (Genie EVent
Generation Driver - a provisional, temporary name that we are stuck with)

C.Andreopoulos (Liverpool/STFC-RAL) GENIE March 10, 2014 11 / 32

Event Generation Framework

<<Object>>

EventRecord

+AcceptVisitor(vis:EventRecordVisitor *)

<<Object>>

GHepRecord

<<pABC>>

EventRecordVisitorI

+VisitObjectStructure(event_rec:GHepRecord *)

<<Object implementing>>

EventGeneratorI

<<Object>>

GVldContext

<<pABC>>

EventGeneratorI

#fVldContext: GVldContext *

+ValidityContext(): const GVldContext &

+IntListGenerator(): const InteractionListGeneratorI *

+CrossSectionAlg(): const XSecAlgorithmI *

1..1

generates

<<Object imlpementing>>

InteractionListGeneratorI

<<Object implementing>>

XSecAlgorithmI

<<Object imlpementing>>

EventRecordVisitorI

<<ABC>>

Algorithm

<<Object>>

GHepParticle

<<Object>>

Interaction

Event generation output

2..*

1

1

1

<<Object>>

GEVGDriver

invokes appropriate generator for selected process

driver class

(user interface)

configured for given

initial state

implements physics model for each generator

(validity context, list of interactions that can be generated,

cross section model associated with these interactions,

list of processing steps for generating event kinematics)

1..*

1..1

1..1
1..*

C.Andreopoulos (Liverpool/STFC-RAL) GENIE March 10, 2014 12 / 32

Selecting an interaction and the corresponding generator

For a given initial state:

Loop over all generators loaded in the event generation driver, query each one for their
interaction list and create a map between generators and physics processes.

Loop over processes in above map and get the corresponding generator. Through the
generator get access to the cross-section model and calculate the cross-section for the
given initial state.

Once all cross-sections are computed, roll the dice and pick a process.

Working backwards, locate the first (and only) generator which claimed it can generate
kinematics for the chosen process (Chain of Responsibility pattern).

Delegate responsibility to the chosen generator.

C.Andreopoulos (Liverpool/STFC-RAL) GENIE March 10, 2014 13 / 32

Generating event kinematics

The generator includes a list of ”event record visitors” (algorithms). These are objects
which sequentially ”visit” and modify the event record (Visitor pattern).

They do not communicate directly. At each stage, the event is the only record of what
has been done so far.

Each event record visitor looks at the event and modifies it (eg, Hadron transport model
will look for hadrons within the nucleus and propagate them out).

Understanding the event structure is critical

Currently, the event structure is relatively consistent across all generators.

However, we do not have a clear and well documented standard and some status codes
tend to have a vague meaning and/or are relics that we still haven’t shed. This has to be
addressed in the near future.

C.Andreopoulos (Liverpool/STFC-RAL) GENIE March 10, 2014 14 / 32

The GHEP event record

C.Andreopoulos (Liverpool/STFC-RAL) GENIE March 10, 2014 15 / 32

Understanding GENIE events - An example

C.Andreopoulos (Liverpool/STFC-RAL) GENIE March 10, 2014 16 / 32

Understanding GENIE events - An example

C.Andreopoulos (Liverpool/STFC-RAL) GENIE March 10, 2014 17 / 32

Understanding GENIE events - An example

C.Andreopoulos (Liverpool/STFC-RAL) GENIE March 10, 2014 18 / 32

Understanding GENIE events - An example

C.Andreopoulos (Liverpool/STFC-RAL) GENIE March 10, 2014 19 / 32

Understanding GENIE events - An example

C.Andreopoulos (Liverpool/STFC-RAL) GENIE March 10, 2014 20 / 32

Understanding GENIE events - An example

C.Andreopoulos (Liverpool/STFC-RAL) GENIE March 10, 2014 21 / 32

Understanding GENIE events - An example

C.Andreopoulos (Liverpool/STFC-RAL) GENIE March 10, 2014 22 / 32

Understanding GENIE events - An example

C.Andreopoulos (Liverpool/STFC-RAL) GENIE March 10, 2014 23 / 32

Understanding GENIE events - An example

C.Andreopoulos (Liverpool/STFC-RAL) GENIE March 10, 2014 24 / 32

Understanding GENIE events - An example

C.Andreopoulos (Liverpool/STFC-RAL) GENIE March 10, 2014 25 / 32

Interaction summary

The event record also includes a summary (Interaction). A very usefull object that
includes key information about the event.

Would have been tedious to have to analyze the event record every time you want to get
Q2 or the neutrino energy at the hit nucleon rest frame.
Many algorithms (eg cross-section) use an Interaction as input, not a GHEP record. One
can easily invoke these algorithms for use-cases that do not involve event generation.
Despite being a complex collection of objects can be easily instantiated using the
named-constructor C++ idiom, eg
Interaction * ccqe = Interaction::QELCC(1000060120,2112,14); (νµ + (n)C 12)
It also plays the role of the ”reaction code” used in fortran generators.
Note main caveat: Some information about the event is available both by analyzing the
GHEP record and stored in an Interaction object. It has to be the same. It will not be the
same unless you explicitly take care of it.

C.Andreopoulos (Liverpool/STFC-RAL) GENIE March 10, 2014 26 / 32

MC Dead-Ends

The event record visitors apply themselves sequentially to the event record.

Within each such module one tries things, evaluates their probability, rolls the dice and
decides whether to accept them or not.

Ocassionally, based on the route already chosen by previous modules, a module may not
be able to save the day and you have to abort the event.

Do not exit()! This is not an error.

In fact, even if you encounter an error (unless it is a major one) do not exit()!

Better to have a 0.1% of mis-simulated events than having 0.1% of events causing

100% failure rate.

Throw an exception!

And use the message service properly to provide users and other developers with valuable

diagnostic information.

C.Andreopoulos (Liverpool/STFC-RAL) GENIE March 10, 2014 27 / 32

Throwing an Event Generation Exception

Assume you need to abort an event because of X reason. Do:

genie::exceptions::EVGThreadException e;
e.SetReason(”All hell break loose”);
e.SwitchOnFastForward(); or e.SwitchOnStepBack(); or e.SetReturnStep(N);
throw e;

The generator will catch the exception and do as it is told:

Could skip all further processing (which would also fail) and return an incomplete event.
You may opt to reject such events or accept them and write them out in the event tree.

Alternatively, you might go back to any step of the processing chain.

We can store snapshots of the event record after each processing step. So an ”undo” is
possible.

In principle we can return to an arbitrary point of the processing chain. In practice, we
usually go back at the beginning or directly at the end.

If you want to accept a particular type of incomplete event, make sure you flag it
appropriately. GENIE includes a 16-bit error code field and you can switch on particular
error codes, eg: event->EventFlags()->SetBitNumber(kPauliBlock, true);

When you run GENIE, you can specify another 16-bit field mask and we use a bit-wise
AND to determine which errors to ignore.

Powerfull stuff, but do not abuse if not necessary - Keep it simple!

C.Andreopoulos (Liverpool/STFC-RAL) GENIE March 10, 2014 28 / 32

The Message Service

No cout or cerr.

Use the GENIE message service wisely to provide usefull diagnostic information.

GENIE can produce too much print-out and usefull information might be lost if all
information is sent to a single message stream.

In production mode, all message thresholds are set to warning and important information
might be lost if it is not flagged-up correctly.

Just type:
LOG(”stream name”, priority) << ”some message”;
where priority is any of:
pFATAL, pALERT, pCRIT, pERROR, pWARN, pNOTICE, pINFO or pDEBUG

C.Andreopoulos (Liverpool/STFC-RAL) GENIE March 10, 2014 29 / 32

Utilities

Do not hard-code, do not duplicate definitions (eg PDG codes), constants
(eg masses), code (eg kinematic limits).
Look what is available in various packages, eg in

BaryonResonance

Conventions

PDG

Nuclear

Utils

C.Andreopoulos (Liverpool/STFC-RAL) GENIE March 10, 2014 30 / 32

Other parts of the framework

I have described key concepts of the core event generation framework

It helps GENIE in its core mission:

1) ”give me an initial state (eg 1 GeV νe + Ar), and I will generate events.”

We also consider the following two as part of GENIE’s mission:

2) ”give me a neutrino flux and a detector geometry description,
and I will generate events.”

3) ”give me a simulated observable distribution and I will calculate the uncertainty

on it.”

Additional framework layers were developed for 2 and 3.

2 is extremely well-developed and mature, one of the main GENIE success stories. It
allows experiments to generate realistic MC for complex experimental setups using
off-the-shelf components.

3 is also well developed, functional and very useful, but with some issues to be addressed
in future releases (definition of ”nominal” physics should be based on meta-data stored in
the generated event files, not the present default state of the generator which could be
different)

Both 2 and 3 are complex and won’t discuss them right now.

C.Andreopoulos (Liverpool/STFC-RAL) GENIE March 10, 2014 31 / 32

Enjoy a week of GENIE coding!

Will always be available for
questions and discussion.

