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A comprehensive overview of kaon decays is presented. The Standard Model predictions are
discussed in detail, covering both the underlying short-distance electroweak dynamics and the
important interplay of QCD at long distances. Chiral perturbation theory provides a universal
framework for treating leptonic, semileptonic and nonleptonic decays including rare and radiative
modes. All allowed decay modes with branching ratios of at least 10−11 are analyzed. Some decays
with even smaller rates are also included. Decays that are strictly forbidden in the Standard Model
are not considered in this review. The present experimental status and the prospects for future
improvements are reviewed.
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I. INTRODUCTION

Kaon decays have played a key role in the shaping
of the Standard Model (SM) (Glashow, 1961; Salam,
1968; Weinberg, 1967), from the discovery of kaons
(Rochester and Butler, 1947) until today. Prominent ex-
amples are the introduction of strangeness (Gell-Mann,
1953; Pais, 1952), parity violation (K → 2π, 3π puz-
zle) (Dalitz, 1954; Lee and Yang, 1956), quark mixing
(Cabibbo, 1963; Kobayashi and Maskawa, 1973), the dis-
covery of CP violation (Christenson et al., 1964), sup-
pression of flavor-changing neutral currents (FCNC) and
the GIM mechanism (Glashow et al., 1970). Moreover,
kaon decays continue to have an important impact on
flavor dynamics in constraining physics beyond the SM.

The aim of this review is a comprehensive survey of
kaon decays allowed in the SM with branching ratios of at
least 10−11. Some decays are included with even smaller
decay rates. We do not cover decays that are strictly
forbidden in the SM such as lepton-number or lepton-
flavor violating decays.

Kaon decays involve an intricate interplay between
weak, electromagnetic and strong interactions. A major
theoretical challenge has to do with the intrinsically non-
perturbative nature of the strong interactions in kaon
physics. The last 25 years have seen the development
of a systematic approach to low-energy hadron physics
in the framework of chiral perturbation theory (we re-
fer to Sec. II.B for references). The approach provides
a systematic expansion of decay amplitudes in terms of
momenta and meson masses. The momenta of particles
in the final states are sufficiently small so that the kaon
mass sets the scale for the quality of the expansion. The
relevant dimensionless ratio is M2

K/(4πFπ)
2 ≃ 0.18.

Looking in more detail into the predictions of chiral
perturbation theory (CHPT) for kaon decays, one ob-
serves a rather wide range, from cases where great preci-
sion can be achieved [especially in (semi)leptonic decays]
to processes where hadronic uncertainties remain the ma-
jor obstacle for comparison with experiment (mainly in
nonleptonic decays). However, an important feature of
CHPT in general is that it parametrizes the intrinsic
hadronic uncertainties by a number of parameters, the
so-called low-energy constants (LECs). The quality of
theoretical predictions hinges to a large extent on the
available information on those LECs. Over the years, a
lot of progress has been achieved in the theoretical under-
standing and the phenomenological knowledge of LECs.
In recent years, lattice simulations have made important
contributions to this field. For the time being, lattice
QCD gives access mainly to strong LECs (see Sec. III).
This is one of the reasons why much better precision can
be achieved in semileptonic than in nonleptonic decays.

Kaon decays form a fascinating chapter of particle
physics in themselves but they also give access to fun-
damental parameters of the SM such as the Cabibbo-
Kobayashi-Maskawa (CKM) matrix elements Vus and
Vtd. Although we stay strictly within the SM for this

review, kaon decays have of course the potential to catch
glimpses of New Physics, especially in those cases where
the SM makes precise predictions. The constraints on
New Physics are most effective in combination with other
information from the low-energy/high-intensity frontier
that are out of scope for this review. However, the im-
pact of such constraints depends crucially on the quality
of SM predictions. A state-of-the-art survey of kaon de-
cays in the SM is therefore expected to be very useful
also for physics beyond the SM.

We review the status of K decays at a time when both
theory and experiment progress at a somewhat slower
pace than ten years ago. Nevertheless, there is still con-
siderable activity in the field. The experimental program
for kaon decays concentrates on specific channels of par-
ticular interest for physics beyond the SM but results for
other channels can be expected as by-products. The main
players in the near future on the experimental side will be
NA62 at CERN (Collazuol, 2009), K0TO (Nanjo, 2009)
and TREK (Kohl, 2010; Paton et al., 2006) at J-PARC,
KLOE-2 at DAΦNE (Amelino-Camelia et al., 2010),
KLOD (Bolotov et al., 2009) and OKA (Kurshetsov,
2009) at IHEP Protvino, and the proposed Project-X at
Fermilab (Bryman and Tschirhart, 2010).

Kaon decays have been treated in several re-
views and lecture notes during the past 20
years (Artuso et al., 2008; Barker and Kettell,
2000; Battiston et al., 1992; Bryman, 1989;
Buchalla, 2001; Buchholz and Renk, 1997; Buras,
1996; Buras et al., 2008; D’Ambrosio et al., 1994;
Littenberg and Valencia, 1993; Ritchie and Wojcicki,
1993; Winstein and Wolfenstein, 1993).

The review is organized along the following lines. We
start with a brief summary of the theoretical framework,
including both the short-distance aspects and the low-
energy realization in terms of CHPT. For the latter, we
also recapitulate the present knowledge of the coupling
constants in the chiral Lagrangians (LECs). As already
emphasized and in contrast to most previous reviews of
the field, we then discuss essentially all kaon decays al-
lowed in the SM that have either already been measured
or that may become accessible experimentally in the not
too distant future. We divide the actual review of differ-
ent channels into three parts: leptonic and semileptonic
decays, dominant nonleptonic decays (K → 2π, 3π) and,
finally, rare and radiative decays.

In Sec. II, we recall the effective Lagrangians in the SM,
for both semileptonic and nonleptonic decays, after inte-
grating out the W and Z bosons and the heavy quarks
(t, b, c). For nonleptonic transitions, the leading QCD
corrections are summed up with the help of the operator
product expansion (OPE) and the renormalization group.
The second part of this section contains a brief introduc-
tion to CHPT, concentrating on the various chiral La-
grangians relevant for K decays. Estimates of LECs are
presented in Sec. III. In addition to phenomenological de-
terminations, the large-NC limit of QCD provides a use-
ful framework for theoretical estimates. Strong LECs are
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dominated by the exchange of meson resonances. The re-
sulting numerical estimates are in general in good agree-
ment with upcoming lattice determinations. Through
the hadronization of short-distance operators appearing
in the effective Lagrangian for nonleptonic transitions at
the quark level, electroweak LECs can be expressed in
terms of strong and electromagnetic couplings.

In Sec. IV, we review the current status of leptonic and
semileptonic modes (including radiative channels). Kℓ2

andKℓ3 decay rates can be predicted with great accuracy,
providing non-trivial tests of the SM and allowing for the
extraction of Vus. Kℓ4 decays are used as sensitive probes
of chiral dynamics in ππ scattering whereas Ke5 decays
are included for completeness only.

The dominant nonleptonic decays K → 2π, 3π are
treated in Sec. V. The two-pion modes are used to ex-
tract the leading-order (LO) nonleptonic LECs G8, G27

on the basis of a next-to-leading-order (NLO) calcula-
tion. To determine the s-wave ππ phase shift difference
δ0(MK) − δ2(MK), inclusion of isospin-violating correc-
tions is mandatory. This applies also to the SM predic-
tion of the CP-violating ratio ǫ′/ǫ although the theoreti-
cal precision still does not match the experimental accu-
racy. For the three-pion modes, NLO corrections signifi-
cantly improve the agreement between theory and exper-
iment. In addition to the CP-violating decay KS → 3π0,
special attention has been given to CP-violating asym-
metries in the linear Dalitz plot parameter for the three-
pion decays of charged kaons. Somewhat unexpectedly,
K → 3π decays with at least two π0 in the final state
allow for a precise extraction of s-wave ππ scattering
lengths by analyzing the cusp near threshold.

Rare and radiative decays are considered in Sec. VI.
We first summarize the status of the rare decays KL →
π0νν̄ and K± → π±νν̄ that can be predicted with a
precision surpassing any other FCNC process involving
quarks. The modes K → ππνν̄ can also be predicted
with good accuracy but experimental limits are still far
above the rates expected in the SM. Most of the remain-
ing radiative modes K → γ(∗)γ(∗), K → ℓ+ℓ−, K →
πℓ+ℓ−, K → πγγ(∗) and K → ππγ(∗) are dominated
by long-distance dynamics to be analyzed in the CHPT
framework. All channels have been calculated to NLO
but in many cases estimates of the dominant next-to-
next-to-leading-order (NNLO) effects are also available.
Although of minor phenomenological interest at present,
the decays K0 → 3γ, KL → γγℓ+ℓ−, KL → γνν̄,
KS → ℓ+1 ℓ

−
1 ℓ

+
2 ℓ

−
2 , K

0 → π0π0γ, K0 → π0π0γγ and
K → 3πγ are included for completeness. Conclusions
and an outlook are presented in Sec. VII. Some one-loop
functions are collected in the appendix.

II. THEORETICAL FRAMEWORK

A. Short-distance description

The SM predicts strangeness-changing transitions with
∆S = 1 via W exchange between two weak charged cur-
rents. At the kaon mass scale, the heavyW boson can be
integrated out and the interaction is described in terms
of effective four-fermion operators.
Semileptonic transitions are mediated by the effective

Lagrangian

Leff = −GF√
2
S
1/2
EW

[
ℓ̄γµ(1− γ5)νℓ

]
[ūiγ

µ(1 − γ5)Vij dj ]

+ h.c. (2.1)

where Vij denotes the element ij of the CKM ma-
trix (Cabibbo, 1963; Kobayashi and Maskawa, 1973) and
GF = 1.1663788 (7)× 10−5GeV−2 (Webber et al., 2011)
is the Fermi constant as extracted from muon decay. The
universal short-distance factor

SEW = 1 +
2α

π

(
1− αs

4π

)
ln
MZ

Mρ
+O

(ααs

π2

)

= 1.0223± 0.0005 (2.2)

encodes electroweak corrections not included in
GF (Sirlin, 1978, 1982) and small QCD effects
(Marciano and Sirlin, 1993).
W exchange between two quark currents generates the

∆S = 1 four-quark operator

Q2 = [s̄γµ(1− γ5)u] [ūγµ(1− γ5)d] , (2.3)

mediating nonleptonic K decays. Gluonic cor-
rections bring further ∆S = 1 operators, which
mix under renormalization (Altarelli and Maiani,
1974; Gaillard and Lee, 1974a; Shifman et al., 1977;
Vainshtein et al., 1975):

Q1 =
[
s̄αγµ(1− γ5)u

β
] [
ūβγµ(1− γ5)d

α
]
,

Q3 = [s̄γµ(1 − γ5)d]
∑

q=u,d,s

[q̄γµ(1− γ5)q] ,

Q4 =
[
s̄αγµ(1− γ5)d

β
] ∑

q=u,d,s

[
q̄βγµ(1− γ5)q

α
]
,

Q5 = [s̄γµ(1 − γ5)d]
∑

q=u,d,s

[q̄γµ(1 + γ5)q] , (2.4)

Q6 =
[
s̄αγµ(1− γ5)d

β
] ∑

q=u,d,s

[
q̄βγµ(1 + γ5)q

α
]
,

where α, β denote color indices and color-singlet currents
are understood whenever color labels are not explicit
(q̄ Γq ≡ q̄αΓqα).
Owing to the presence of very different mass scales

(Mπ < MK ≪ MW ), the QCD corrections are ampli-
fied by large logarithms. The short-distance logarithmic
corrections can be summed up using the OPE and the
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renormalization group, all the way down from MW to
scales µ < mc (Gilman and Wise, 1979, 1980). One gets
in this way an effective Lagrangian, defined in the three-
flavor theory (Buras, 1998),

L∆S=1
eff = −GF√

2
VudV

∗
us

13∑

i=1

Ci(µ)Qi(µ), (2.5)

which is a sum of local four-fermion operators Qi, con-
structed with the light degrees of freedom (m < µ),
modulated by Wilson coefficients Ci(µ), which are func-
tions of the heavy masses (MZ ,MW ,mt,mb,mc > µ) and
CKM parameters. The unitarity of the CKM matrix,

λu + λc + λt = 0, λq ≡ VqdV
∗
qs, (2.6)

allows to write the Wilson coefficients in the form

Ci(µ) = zi(µ) + τ yi(µ), (2.7)

where τ = −λt/λu. The CP-violating decay amplitudes
are proportional to the components yi(µ).
The Wilson coefficients are known at the NLO

(Buras et al., 1993a, 1996, 1993b; Ciuchini et al., 1993,
1994, 1995). This includes all corrections of O(αn

s t
n)

and O(αn+1
s tn), where t = ln (M1/M2) refers to the log-

arithm of any ratio of heavy mass scales M1,M2 ≥ µ.
Moreover, the full mt/MW dependence (at lowest order
in αs) has been taken into account.
The combination Q− = Q2 − Q1 and the ‘penguin’

operators Qi, i = 3, 4, 5, 6, induce pure ∆I = 1/2 transi-
tions and transform like (8L, 1R) under chiral SU(3)L ×
SU(3)R transformations in flavor space, while Q(27) =
2Q2+3Q1−Q3 transforms like a (27L, 1R) operator that
induces both ∆I = 1/2 and ∆I = 3/2 transitions.
The inclusion of virtual electromagnetic interactions

brings in the additional electromagnetic penguin oper-
ators (Bijnens and Wise, 1984; Buras and Gérard, 1987;
Lusignoli, 1989; Sharpe, 1987)

Q7 =
3

2
[s̄γµ(1− γ5)d]

∑

q=u,d,s

eq [q̄γµ(1 + γ5)q] ,

Q8 =
3

2

[
s̄αγµ(1− γ5)d

β
] ∑

q=u,d,s

eq
[
q̄βγµ(1 + γ5)q

α
]
,

Q9 =
3

2
[s̄γµ(1− γ5)d]

∑

q=u,d,s

eq [q̄γµ(1− γ5)q] , (2.8)

Q10 =
3

2

[
s̄αγµ(1− γ5)d

β
] ∑

q=u,d,s

eq
[
q̄βγµ(1− γ5)q

α
]
,

where eq denotes the corresponding quark charges in

units of e =
√
4πα. Their Wilson coefficients get also

higher-order electroweak contributions from Z-penguin
and W -box diagrams. Under the action of the chiral
group SU(3)L × SU(3)R the operators Q7 and Q8 trans-
form like combinations of (8L, 1R) and (8L, 8R) opera-
tors, while Q9 and Q10 transform like combinations of
(8L, 1R) and (27L, 1R).

d s

u, c, t

W

g, γ, Z0

d qi

u, c, t

s

W

W

qj

qk
qi

qi

FIG. 1 Penguin and box topologies.

Three more operators need to be considered in pro-
cesses with leptons in the final state (Buchalla et al.,
1996; Gilman and Wise, 1980):

Q11 ≡ Q7V = [s̄γµ(1 − γ5)d]
∑

ℓ=e,µ

[
ℓ̄γµℓ

]
,

Q12 ≡ Q7A = [s̄γµ(1 − γ5)d]
∑

ℓ=e,µ

[
ℓ̄γµγ5ℓ

]
, (2.9)

Q13 ≡ Q(ν̄ν) = [s̄γµ(1 − γ5)d] [ν̄γµ(1− γ5)ν] .

The mixing between the K0 and its antiparticle is in-
duced through box diagrams with two W exchanges
(Gaillard and Lee, 1974b), which in the three-flavor the-
ory generate the effective Lagrangian (Gilman and Wise,
1983)

L∆S=2
eff = −G

2
FM

2
W

(4π)2
C∆S=2(µ)Q∆S=2(µ), (2.10)

with

Q∆S=2 = [s̄γµ(1− γ5)d] [s̄γµ(1 − γ5)d] . (2.11)

There are in addition long-distance contributions from
two L∆S=1

eff insertions.
The box and penguin topologies, shown in Fig. 1, in-

troduce contributions proportional to λq (q = u, c, t)
from virtual up-type quark exchanges. The hierarchy of
CKM factors is better visualized through the Wolfenstein
(1983) parametrization: λu ∼ λ ≡ |Vus|, λc ∼ −λ and
λt ∼ −A2λ5, where A = |Vcb|/λ2. The sum of the three
contributions cancels for equal up-type quark masses, ow-
ing to the unitarity relation (2.6). The quark-mass de-
pendence of the associated loop functions breaks the GIM
cancellation and strongly enhances the relevance of the
top contribution in short-distance dominated processes.
This is especially true for CP-violating effects, which are
proportional to (Buras et al., 1994b)

Im (λt) = −Im (λc) ≈ ηλ5A2. (2.12)
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The corresponding CP-conserving factors are given to a
very good approximation by

Re(λc) = −λ
(
1− λ2

2

)
,

Re(λt) = −A2λ5
(
1− λ2

2

)
(1− ρ̄). (2.13)

The value of λ can be extracted from Kℓ3 decays and
is given in Eq. (4.58). The remaining CKM parameters
are obtained from global SM fits to flavor-changing data
(Bona et al., 2006; Charles et al., 2005). We will adopt
the values (Charles et al., 2010)

A = 0.812+0.013
−0.027, ρ̄ = 0.144± 0.025,

η̄ ≡
(
1− λ2

2

)
η = 0.342± 0.016. (2.14)

In order to fully calculate the kaon decay amplitudes,
we also need to know the matrix elements of the operators
Qi between the initial and final states, which involve non-
perturbative dynamics at low energies. These hadronic
matrix elements should cancel the renormalization-scale
dependence of the Wilson coefficients Ci(µ). Methods
to tackle this challenging task include lattice gauge
theory (Boucaud et al., 2005; Boyle and Garron, 2010;
Colangelo et al., 2011; Goode and Lightman, 2010;
Kim and Sachrajda, 2010; Laiho and Van de Water,
2010; Liu, 2010), the 1/NC expansion (Bardeen et al.,
1987a,b, 1988; Hambye et al., 2000, 1998, 1999), QCD
sum rules (Guberina et al., 1985; Jamin and Pich,
1994; Pich et al., 1986; Pich and de Rafael, 1985,
1987, 1996; Prades et al., 1991), functional bosoniza-
tion techniques (Bruno and Prades, 1993; Friot et al.,
2004a; Hambye et al., 2003; Knecht et al., 1999b, 2001;
Peris and de Rafael, 2000; Pich and de Rafael, 1991)
and dynamical models (Antonelli et al., 1996a,b, 1997;
Bertolini et al., 1995, 1998; Bijnens et al., 2001, 2006;
Bijnens and Prades, 1995a,b, 1999, 2000a,b).
CHPT provides a solid effective field theory framework

to analyze systematically the long-distance dynamics,
which we discuss next. Nevertheless, non-perturbative
techniques remain necessary for matching the effective
low-energy theory with the underlying QCD Lagrangian.

B. Chiral perturbation theory

Most kaon decays are governed by physics at long dis-
tances. Below the resonance region one can use symme-
try considerations to define another effective field the-
ory in terms of the QCD Goldstone bosons. CHPT de-
scribes (Gasser and Leutwyler, 1985a; Weinberg, 1979)
the pseudoscalar-octet dynamics through a perturbative
expansion in powers of momenta and quark masses over
the chiral symmetry-breaking scale Λχ ∼ 1 GeV. Chiral
symmetry fixes the allowed operators, providing a com-
prehensive framework for both semileptonic and nonlep-
tonic kaon decays including radiative corrections. For

TABLE I The ∆S = 1 chiral Lagrangian describing
(semi)leptonic and nonleptonic kaon decays. Leptons
are incorporated for radiative corrections in (semi)leptonic
decays. The numbers in brackets denote the number of LECs.

Lchiral order (# of LECs) loop order

Lp2(2) + Lodd
p4 (0) + L∆S=1

G8p2
(1) + L∆S=1

G27p2
(1) L = 0

+ Lemweak
G8e2p0

(1) + Lem
e2p0(1) + Llepton

kin (0)

+ Lp4(10) + Lodd
p6 (23) + L∆S=1

G8p4
(22) L ≤ 1

+ L∆S=1
G27p4

(28) + Lemweak
G8e2p2

(14)

+ Lem
e2p2(13) + Llepton

e2p2
(5)

+ Lp6(90) L ≤ 2

general reviews of CHPT, see Ecker (1995), Pich (1995),
de Rafael (1995), Pich (1998), Scherer (2003), Gasser
(2004) and Bijnens (2007). The standard textbook on
the SM at low energies is Donoghue et al. (1992).

The effective mesonic chiral Lagrangian in use today
is listed schematically in Table I. The strong chiral La-
grangian relevant for (semi)leptonic decays to NNLO is
given by

Lstrong =
F 2
0

4
〈DµUD

µU † + χU † + χ†U〉
︸ ︷︷ ︸

Lp2(2)

+
∑

i

LiO
p4

i

︸ ︷︷ ︸
Lp4(10)

+ LWZW︸ ︷︷ ︸
Lodd

p4
(0)

(2.15)

+
∑

i

CiO
p6

i

︸ ︷︷ ︸
Lp6 (90)

+
∑

i

CW
i Op6,odd

i

︸ ︷︷ ︸
Lodd

p6
(23)

.

F0 is the pion decay constant in the limit of chiral
SU(3), the SU(3) matrix field U contains the pseu-
doscalar fields, Dµ is the covariant derivative in the
presence of external vector and axial-vector fields, the
scalar field χ accounts for explicit chiral symmetry break-
ing through the quark masses mu,md,ms, and 〈. . .〉
stands for the three-dimensional flavor trace. Explicit
forms of the higher-order Lagrangians can be found
in Gasser and Leutwyler (1985a), Wess and Zumino
(1971), Witten (1983), Bijnens et al. (1999, 2002) and
Ebertshauser et al. (2002).
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The nonleptonic weak Lagrangian to NLO is given by

Lweak = G8F
4
0 〈λDµU †DµU〉︸ ︷︷ ︸

L∆S=1
G8p2

(1)

+ G27F
4
0

(
Lµ23L

µ
11 +

2

3
Lµ21L

µ
13

)

︸ ︷︷ ︸
L∆S=1

G27p2
(1)

(2.16)

+ G8F
2
0

∑

i

NiO
8
i

︸ ︷︷ ︸
L∆S=1

G8p4
(22)

+ G27F
2
0

∑

i

DiO
27
i

︸ ︷︷ ︸
L∆S=1

G27p4
(28)

+h.c.

The matrix Lµ = iU †DµU represents the octet of V −A
currents to lowest order in derivatives; λ = (λ6 − iλ7)/2
projects onto the s̄ → d̄ transition. The terms propor-
tional to G8 and G27 transform under chiral transforma-
tions like (8L, 1R) and (27L, 1R), respectively, providing
the most general effective realization of the corresponding
short-distance operators in Eq. (2.5). The Lagrangians
can be found in Cronin (1967), Kambor et al. (1990) and
Ecker et al. (1993).
To include electromagnetic corrections for both

(semi)leptonic and nonleptonic decays, we also need the
chiral Lagrangians

Llepton = Llepton
kin (0) + e2F 2

0

∑

i

XiO
lepton
i

︸ ︷︷ ︸
Llepton

e2p2
(5)

, (2.17)

Lelm = e2ZF 4
0 〈QU †QU〉︸ ︷︷ ︸
Lem

e2p0
(1)

+ e2G8gewkF
6
0 〈λU †QU〉︸ ︷︷ ︸

Lemweak
G8e2p0

(1)

+ e2F 2
0

∑

i

KiO
e2p2

i

︸ ︷︷ ︸
Lem

e2p2
(13)

+ e2G8F
4
0

∑

i

ZiO
EW
i

︸ ︷︷ ︸
Lemweak

G8e2p2
(14)

+ h.c., (2.18)

where Q is the diagonal matrix of quark charges. The
corresponding Lagrangians can be found in Ecker et al.
(1989b), Bijnens and Wise (1984), Grinstein et al.

(1986), Urech (1995), Ecker et al. (2000a) and
Knecht et al. (2000). The terms proportional to
gewk and Zi provide the low-energy realization of the
electromagnetic penguin operators (2.8), while those
with couplings Xi account for the operators in Eq. (2.9)
with explicit lepton fields.
The chiral realization of the ∆S = 2 effective La-

grangian contains a single O(p2) operator:

L∆S=2
eff =

G2
FM

2
W

(4π)2
g
∆S=2

F 4
0 〈λU †DµU〉 〈λU †DµU〉.

(2.19)

The O(p4) operators were discussed by Ecker (1990) and
Kambor et al. (1990).
The CHPT framework determines the K decay am-

plitudes in terms of the LECs multiplying the relevant
operators in the chiral Lagrangian. These LECs encode
all information about the short-distance dynamics, while
the chiral operators yield the most general form of the
low-energy amplitudes compatible with chiral symmetry.
Chiral loops generate non-polynomial contributions, with
logarithms and threshold factors as required by unitarity.
Practically all kaon decays discussed in this review

have been calculated at least up to O(p4). The strong
and nonleptonic parts of the corresponding NLO am-
plitudes can be given in compact form in terms of
the generating functional. The matrix elements and
form factors with at most six external particles (an
external photon counts as two particles), at most one W
(semileptonic decays) and with at most three propaga-
tors in the one-loop amplitudes were presented in closed
form by Unterdorfer and Ecker (2005). This includes
most of the processes covered in this review. Except
for electromagnetic and anomalous contributions, all
amplitudes to O(p4) can be obtained from a Mathemat-
ica program written by René Unterdorfer. The code
along with several examples can be downloaded from
http://homepage.univie.ac.at/Gerhard.Ecker/CPT-amp.html.

III. ESTIMATES OF LOW-ENERGY CONSTANTS

A first-principle calculation of LECs requires to per-
form the matching between CHPT and the underly-
ing SM. This is a very difficult task. In many cases
one resorts to phenomenology to determine the values
of the LECs. For instance, most of the O(p4) cou-
plings of the strong chiral Lagrangian, Li, are rather well
known (Bijnens and Jemos, 2011; Ecker, 2007) from low-
energy data (ππ scattering, π and K decay constants
and masses, π electromagnetic radius, π → eνγ, τ de-
cay). The electromagnetic LEC Z arising at O(e2p0) can
be expressed in terms of the squared-mass difference of
the pions:

M2
π± −M2

π0 = 8παZF 2
0 . (3.1)

The matching procedure is of course simpler when-
ever the hadronic dynamics gets reduced to quark cur-
rents. For instance, in the CHPT language, the short-
distance enhancement of semileptonic decays is encoded
in the factor (Descotes-Genon and Moussallam, 2005;
Knecht et al., 2000)

1− e2

2
(Xr

6 − 4Kr
12) ≡ 1− e2

2
Xphys

6 , (3.2)

which is related to SEW in the Lagrangian (2.1) by

e2Xphys
6 (Mρ) = SEW − 1 + e2X̃phys

6 (Mρ), (3.3)

where X̃phys
6 (Mρ) denotes a residual long-distance con-

tribution (Descotes-Genon and Moussallam, 2005).

http://homepage.univie.ac.at/Gerhard.Ecker/CPT-amp.html
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A. The large-NC limit of QCD

The limit of an infinite number of quark colors is a
very useful starting point to understand many features of
QCD (’t Hooft, 1974a,b; Witten, 1979). Assuming con-
finement, the strong dynamics at NC → ∞ is given by
tree diagrams with infinite sums of hadron exchanges,
which correspond to the tree approximation for some lo-
cal effective Lagrangian. Hadronic loops generate correc-
tions suppressed by factors of 1/NC . Resonance chiral
theory (Cirigliano et al., 2006; Ecker et al., 1989a,b) pro-
vides an appropriate framework to incorporate the mas-
sive mesonic states (Pich, 2002). Integrating out the res-
onance fields, one recovers the usual CHPT Lagrangian
with explicit values for the LECs, parametrized in terms
of resonance masses and couplings. The resonance chi-
ral theory generates Green functions that interpolate be-
tween QCD and CHPT. Analyzing these Green functions,
both for large and small momenta, one gets QCD con-
straints on the resonance couplings and, therefore, infor-
mation on the LECs.
Truncating the infinite tower of meson resonances to

the lowest states with 0−+, 0++, 1−− and 1++ quan-
tum numbers, one gets a very successful prediction of the
O(p4NC) strong CHPT couplings in terms of only three
parameters: MV , MS and F0. This provides a theoreti-
cal understanding of the role of resonance saturation in
low-energy phenomenology, which was recently extended
to O(p6) (Cirigliano et al., 2006). Of particular inter-
est for our present purposes are the resulting predictions
for the O(p6) couplings C12 and C34, which govern the
amount of SU(3) breaking in the Kℓ3 form factor at zero
momentum transfer (Cirigliano et al., 2005, 2006):

C12 = − F 2
0

8M4
S

, C34 =
3F 2

0

16M4
S

+
F 2
0

16

(
1

M2
S

− 1

M2
P

)2

.

(3.4)
The large-NC limit turns out to be very useful to an-

alyze the nonleptonic weak Lagrangian, because the T-
product of two color-singlet quark currents factorizes:

〈J · J〉 = 〈J〉 〈J〉
{
1 + O

(
1

NC

)}
. (3.5)

Since quark currents have well-known CHPT realizations,
the hadronization of the short-distance operators Qi can
then be done in a straightforward way. As a result, in
this large-NC framework the electroweak chiral couplings
can be related to strong and electromagnetic LECs of
order p2, p4, p6 and e2p2, respectively. The lowest-order
electroweak LECs take the following values at large NC

(Cirigliano et al., 2004a; Pallante et al., 2001):

g∞8 = −2

5
C1(µ) +

3

5
C2(µ) + C4(µ)− 16L5B(µ)C6(µ),

g∞27 =
3

5
[C1(µ) + C2(µ)],

(e2g8 gewk)
∞ = − 3B(µ)C8(µ)

− 16

3
C6(µ) e

2(K9 − 2K10) (3.6)

and

g∞
∆S=2

= C∆S=2(µ), (3.7)

where the dimensionless couplings g8, g27 are defined as

G8,27 = −GF√
2
VudV

∗
us g8,27. (3.8)

The operators Qi (i 6= 6, 8) factorize into products
of left- and right-handed vector currents, which are
renormalization-invariant quantities. Thus, the large-
NC factorization of these operators does not generate
any scale dependence. The only anomalous dimensions
that survive when NC → ∞ are the ones corresponding
to Q6 and Q8 (Bardeen et al., 1987b; Buras and Gérard,
1987). These operators factorize into color-singlet scalar
and pseudoscalar currents, which are µ dependent. The
CHPT evaluation of the scalar and pseudoscalar currents
provides, of course, the right µ dependence, since only
physical observables can be realized in the low-energy
theory. What one actually finds is the chiral realization
of the renormalization-invariant products mq q̄(1, γ5)q.
This generates in Eq. (3.6) the factors

B(µ) =

[
M2

K

(ms +md)(µ)Fπ

]2
×
{
1 +

8M2
π

F 2
π

L5 (3.9)

− 16M2
K

F 2
π

(2L8 − L5) + 8
2M2

K +M2
π

F 2
π

(3L4 − 4L6)

}
,

which exactly cancel the µ dependence of C6,8(µ) at large
NC . There remains a dependence at NLO.
The large-NC expressions imply the numerical values

g∞8 = (1.13± 0.05µ ± 0.08L5 ± 0.05ms
)

+ τ
(
0.64± 0.15µ ± 0.20L5

+0.25
− 0.16ms

)
,

g∞27 = 0.46± 0.01µ,

(g8gewk)
∞

=
(
−1.60± 0.86µ ± 0.25Ki

+0.57
− 0.35ms

)

− τ
(
25.0± 4.5µ ± 1.0Ki

+9.1
− 5.6ms

)
, (3.10)

where τ is the ratio of CKM matrix elements in Eq. (2.7)
and the main sources of uncertainty are indicated.
While the CP-even part of g∞8 gets contributions from

all (8L, 1R) short-distance operators, its CP-odd com-
ponent is completely dominated by the strong penguin
contribution, proportional to τy6(µ). The CP-odd com-
ponent of gewk is dominated by the electroweak pen-
guin contribution, proportional to τy8(µ), while the CP-
even part receives contributions of similar size from both
strong (Q6) and electroweak (Q8) penguin operators. Ex-
plicit predictions for the higher-order electroweak LECs
can be found in Cirigliano et al. (2004a).
It is important to stress that the large-NC limit is only

applied to the matching between the three-flavor quark
theory and CHPT. The evolution from the electroweak
scale down to µ < mc has to be done without any un-
necessary expansion in powers of 1/NC ; otherwise, one
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would miss large corrections of the form ln(M/m)
/
NC ,

with M ≫ m two widely separated scales. Similarly,
the long-distance rescattering of the final pions in the
K decay generates large logarithmic corrections through
chiral loops, which are of higher order in both the mo-
mentum and 1/NC expansions (Pallante et al., 2001).
These next-to-leading contributions, which give rise to
the large s-wave ππ strong phases, are rigorously incor-
porated through the CHPT framework.

B. Lattice determinations

Lattice results for strong LO and NLO LECs, both
for SU(2) and for SU(3), have recently been summa-
rized by the Flavianet Lattice Averaging Group –FLAG–
(Colangelo et al., 2011). We refer to this comprehensive
review for a detailed discussion.

IV. LEPTONIC AND SEMILEPTONIC DECAYS

Purely leptonic and semileptonic modes are among the
theoretically cleanestK decays. Using CHPT and lattice
QCD, Kℓ2 and Kℓ3 decay rates can be predicted with
high accuracy and provide non-trivial tests of the SM
and its extensions. On the other hand, Kℓ4 decays can
be used as probes of chiral dynamics in ππ scattering.
In this section we review the current status of K → ℓν
(Kℓ2), K → πℓν (Kℓ3), and K → ππℓν (Kℓ4) decays, as
well as their radiative counterparts.

A. Kℓ2 (and πℓ2) decays

1. Electromagnetic corrections

The discussion of electromagnetic contributions to Kℓ2

decays serves as the simplest example of the treatment of
electromagnetism in (semi)leptonic processes. We start
with the parametrization of the inclusive P → ℓνℓ(γ)
decay rate proposed by Cirigliano and Rosell (2007a,b)
(here P = K±, π±),

ΓPℓ2(γ)
= Γ

(0)
Pℓ2

SEW

{
1 +

α

π
F (mℓ/MP )

}
(4.1)

×
{
1− α

π

[
3

2
ln
Mρ

MP
+ c

(P )
1 − M2

P

M2
ρ

c̃
(P )
2 ln

M2
ρ

m2
ℓ

+
m2

ℓ

M2
ρ

(
c
(P )
2 ln

M2
ρ

m2
ℓ

+ c
(P )
3 + c

(P )
4 (mℓ/MP )

)]}
,

which is a modified version of the expression given in
Marciano and Sirlin (1993). The decay rate in the ab-
sence of radiative corrections is given by

Γ
(0)
Pℓ2

=
G2

F |VP |2F 2
P

4π
MP m

2
ℓ

(
1− m2

ℓ

M2
P

)2

, (4.2)

where Vπ = Vud, VK = Vus and Fπ± , FK± denote the
pseudoscalar decay constants in pure QCD including
strong isospin breaking.1 The first term in curly brack-
ets is the universal long-distance correction for a point-
like meson. The explicit form of the one-loop function
F (x) can be found in Marciano and Sirlin (1993). The

structure-dependent coefficients c
(P )
1 are independent of

the lepton mass mℓ and start at O(e2p2) in CHPT. The
other coefficients appear only at higher orders in the chi-

ral expansion. The one-loop result (order e2p2) for c
(P )
1

was given by Knecht et al. (2000),

c
(π)
1 = −Ẽr(Mρ) +

Z

4

(
3 + 2 ln

M2
π

M2
ρ

+ ln
M2

K

M2
ρ

)
,

c
(K)
1 = −Ẽr(Mρ) +

Z

4

(
3 + 2 ln

M2
K

M2
ρ

+ ln
M2

π

M2
ρ

)
, (4.3)

where Z is the O(e2p0) electromagnetic coupling given in

Eqs. (2.18) and (3.1). Ẽr(Mρ) is a certain linear combi-
nation of LECs appearing in the Lagrangians Lem

e2p2 and

Llepton
e2p2 :

Ẽr =
1

2
+ 4π2

(
8

3
Kr

1 +
8

3
Kr

2 +
20

9
Kr

5 +
20

9
Kr

6

− 4

3
Xr

1 − 4Xr
2 + 4Xr

3 − X̃phys
6

)
. (4.4)

The results in Eq. (4.3) are a nice example demon-
strating the power of effective field theory methods. We
see how the electromagnetic corrections to πℓ2 and Kℓ2

of O(e2p2) are related. In particular, c
(π)
1 and c

(K)
1 con-

tain the same combination of LECs Ẽr. Taking the ratio
ΓKℓ2(γ)

/Γπℓ2(γ)
, the coupling constant Ẽr cancels and the

remaining expression

c
(K)
1 − c

(π)
1 =

Z

4
ln
M2

K

M2
π

(4.5)

is uniquely determined in terms of measurable quantities
(Knecht et al., 2000).
Finally, we note that using the matching calculation

of Descotes-Genon and Moussallam (2005) for the LEC

combination Ẽr(Mρ), one obtains

c
(π)
1 = −2.4± 0.5, c

(K)
1 = −1.9± 0.5, (4.6)

where the errors given here are based on naive power
counting of unknown contributions arising at O(e2p4).

2. Extraction of Vus/Vud

As suggested by Marciano (2004), a determination of
|Vus/Vud| can be obtained by combining the experimen-
tal values for the decay rates K → µν(γ) and π → µν(γ)

1 For a discussion of subtleties involved in this separation, see
Gasser and Zarnauskas (2010).
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with the lattice determination of FK/Fπ, which is cur-
rently performed in the isospin limit (mu = md) of QCD.
The relation to be used to extract |Vus/Vud| reads

ΓKℓ2(γ)

Γπℓ2(γ)

=
|Vus|2
|Vud|2

F 2
K

F 2
π

MK±(1 −m2
ℓ/M

2
K±)

2

Mπ±(1−m2
ℓ/M

2
π±)2

×
(
1 + δEM + δSU(2)

)
, (4.7)

where Fπ and FK denote the decay constants in the
isospin limit, δEM is the long-distance electromagnetic
correction (the short-distance part cancels in the ratio)
and the strong isospin-breaking correction δSU(2) is de-
fined by

F 2
K±

F 2
π±

=
F 2
K

F 2
π

(
1 + δSU(2)

)
. (4.8)

The electromagnetic correction is given by
(Cirigliano and Neufeld, 2011; Knecht et al., 2000)

δEM =
α

π

(
F (mℓ/MK)− F (mℓ/Mπ) +

3− Z

4
ln
M2

K

M2
π

)

= −0.0069± 0.0017. (4.9)

The 25% uncertainty of the numerical value is an esti-
mate of corrections arising to higher order in the chi-
ral expansion. The correction parameter δSU(2) reads
(Cirigliano and Neufeld, 2011)

δSU(2) =
√
3 ε(2)

[
−4

3
(FK/Fπ − 1) (4.10)

+
1

3(4π)2F 2
0

(
M2

K −M2
π −M2

π ln
M2

K

M2
π

)]
,

where

ε(2) =

√
3

4R
, R =

ms − m̂

md −mu
, m̂ =

mu +md

2
. (4.11)

With the FLAG (Colangelo et al., 2011) averages of lat-
tice calculations with Nf = 2 + 1 dynamical fermions,2

R = 36.6± 3.8, FK/Fπ = 1.193± 0.006, (4.12)

Cirigliano and Neufeld (2011) obtained

δSU(2) = −0.0044± 0.0005± 0.0011higher orders, (4.13)

where the uncertainty due to higher-order corrections in
the chiral expansion was estimated to be at a level of

2 Based on the results from Allton et al. (2008); Aoki et al.
(2009); Aubin et al. (2008, 2004); Bazavov et al. (2010, 2009);
Beane et al. (2007); Bernard et al. (2007); Blossier et al. (2009);
Dürr et al. (2010); Follana et al. (2008); Göckeler et al. (2006);
Lellouch (2009); Mawhinney (2009); Noaki et al. (2009).

25%. We note that the strong isospin-breaking correc-
tion δSU(2) is of the same order of magnitude as the elec-
tromagnetic correction δEM in Eq. (4.9) and should not
be neglected in the extraction of the ratio |Vus/Vud|.
Combined with the measured values for the leptonic

widths of the pion (Nakamura et al., 2010)

Γπµ2(γ)
= 38.408± 0.007 (µs)−1 (4.14)

and of the kaon (Antonelli et al., 2010b)

ΓKµ2(γ)
= 51.25± 0.16 (µs)−1, (4.15)

Cirigliano and Neufeld (2011) obtained

|Vus|FK

|Vud|Fπ
= 0.23922 (25)×

(
ΓKℓ2(γ)

Γπℓ2(γ)

)1/2

= 0.2763± 0.0005. (4.16)

Finally, taking as reference value for FK/Fπ the FLAG
average in Eq. (4.12), the ratio of the CKM matrix ele-
ments is given by (Cirigliano and Neufeld, 2011)

|Vus|
|Vud|

= 0.2316± 0.0012. (4.17)

3. The ratio R
(K,π)

e/µ

In a first systematic calculation to O(e2p4), the

coefficients c
(P )
2 , c

(P )
3 , c

(P )
4 , c̃

(P )
2 were determined by

Cirigliano and Rosell (2007a,b). This allowed the de-

termination of the ratios R
(P )
e/µ = ΓPe2(γ)

/ΓPµ2(γ)

(P = π,K) with an unprecedented theoretical accu-

racy. In the SM, the ratios R
(P )
e/µ are helicity sup-

pressed as a consequence of the V − A structure of
the charged currents, constituting sensitive probes of
New Physics. The two-loop effective theory results were
complemented by a large-NC calculation of an asso-
ciated counterterm and a summation of leading loga-
rithms αn lnn(mµ/me) (Marciano and Sirlin, 1993) giv-
ing (Cirigliano and Rosell, 2007a,b)

R
(π)
e/µ = (1.2352± 0.0001)× 10−4,

R
(K)
e/µ = (2.477± 0.001)× 10−5. (4.18)

In the case of R
(K)
e/µ the uncertainty arising from matching

was increased by a factor of four to account for higher-
order chiral corrections of O(e2p6). The central value

of R
(π)
e/µ is in agreement with the results of previous cal-

culations (Finkemeier, 1996; Marciano and Sirlin, 1993),
pushing the theoretical uncertainty below the 0.1 per-
mille level. The discrepancy with a previous determina-

tion of R
(K)
e/µ can be traced back to inconsistencies in the

analysis of Finkemeier (1996).
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The above theoretical results are compatible with
current experimental measurements (Ambrosino et al.,
2009a; Britton et al., 1994, 1992; Czapek et al., 1993;
Lazzeroni et al., 2011) averaging to

R
(π)
e/µ

∣∣∣
exp

= (1.230± 0.004)× 10−4,

R
(K)
e/µ

∣∣∣
exp

= (2.488± 0.012)× 10−5. (4.19)

They provide a clean basis to detect or constrain non-
standard physics in these channels by comparison with
upcoming measurements, which will push the fractional

uncertainty from 0.3% to 0.05% in R
(π)
e/µ (Počanić et al.,

2009; Sher et al., 2009) and from 0.5% to 0.4% in R
(K)
e/µ

(Collazuol, 2009).

B. Kℓ2γ

The radiative leptonic decays Kℓ2γ ,

K+(p) → ℓ+(pℓ)νℓ(pν)γ(q), ℓ = e, µ (4.20)

allow one to probe the low-energy structure of QCD and
its anomalous couplings. The matrix element reads

T = −ieGFV
∗
us ǫ

∗
µ (FKL

µ −Hµν lν) (4.21)

where ǫµ denotes the photon polarization vector and the
other quantities are given by (W = p− q)

Lµ = mℓ ū(pν)(1 + γ5)

(
2pµ

2p · q −
2pµℓ + /qγµ

2pℓ · q

)
v(pℓ),

lµ = ū(pν)γ
µ(1− γ5)v(pℓ), (4.22)

Hµν = − 1√
2MK

[
iV (W 2) ǫµναβqαpβ

−A(W 2) (q ·Wgµν −Wµqν)
]
.

V (W 2) and A(W 2) denote the vector and axial-vector3

Lorentz-invariant form factors characterizing the general
decomposition of the correlator of weak and electromag-
netic currents,

V w
µ = s̄γµu, Aw

µ = s̄γµγ5u,

V em
µ = (2ūu− d̄d− s̄s)/3, (4.23)

between the vacuum and the one-kaon state at q2 = 0,
i.e., for real photons (Bijnens et al., 1993):

Πµν(q, p) = (4.24)∫
d4x eiqx〈0|T

(
V em
µ (x)(V w

ν (0)−Aw
ν (0))

)
|K+(p)〉.

3 Note that we are using here the normalization of V and A
adopted in Nakamura et al. (2010).

The explicit relation of A(W 2) and V (W 2) to the above
correlator can be found in the appendix of Bijnens et al.
(1993). The amplitude (4.21) is the sum of two terms:
the so-called “inner-bremsstrahlung” (IB) term (propor-
tional to Lµ), uniquely determined in terms of the non-
radiative amplitude, and the “structure-dependent” (SD)
term proportional to Hµν . Correspondingly, the spin-
averaged differential decay distribution can be decom-
posed into three terms (IB, SD, and INT, the latter de-
noting the interference of IB and SD amplitudes):

d2Γ

dxdy
= AIB fIB(x, y)

+
ASD

2

[
(V +A)

2
fSD+(x, y) + (V −A)

2
fSD−(x, y)

]

− AINT√
2

[(V +A) fINT+(x, y) + (V −A) fINT−(x, y)] .

(4.25)

Here

AIB = 4
m2

ℓ

M2
K

(
FK

MK

)2

ASD,

ASD =
G2

F |Vus|2α
32π2

M5
K ,

AINT = 4
m2

ℓ

M2
K

(
FK

MK

)
ASD, (4.26)

the independent kinematical variables are

x =
2p · q
M2

K

, y =
2p · pℓ
M2

K

, (4.27)

and the functions fIB, fSD± , and fINT± can be
found in Bijnens et al. (1993). Note that the inner-
bremsstrahlung and interference terms in the rate
(4.25) are proportional to the helicity suppression factor
(mℓ/MK)2, so that Ke2γ is dominated by the structure-
dependent contribution. On the other hand, Kµ2γ , while
sensitive to interference and structure-dependent terms,
is dominated by internal bremsstrahlung.
Internal bremsstrahlung is fixed in terms of a sin-

gle hadronic input, namely the kaon decay constant
FK . The form factors V (W 2) and A(W 2) can be cal-
culated in CHPT, with V (W 2) arising from the anoma-
lous sector. The first non-trivial contributions arise at
O(p4) (Bijnens et al., 1993):

Ap4 =
4
√
2MK

F0
(Lr

9 + Lr
10) = 0.042,

Vp4 =

√
2MK

8π2F0
= 0.096, (4.28)

where the numerical values were obtained by using the
central values F0 = Fπ , L

r
9(µ = Mρ) = 6.9 × 10−3, and

Lr
10(µ =Mρ) = −5.5× 10−3.
The contributions of O(p6) to the vector form factor

involve one-loop graphs in the anomalous sector as well
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as O(p6) counterterms. They were worked out first by
Ametller et al. (1993) and later confirmed by Geng et al.

(2004). To this order, V (W 2) acquires a non-trivial de-
pendence on W 2 = M2

K(1 − x), which can be approxi-
mated by the linear parametrization

V (W 2) = V0

[
1 + λ̃(1 − x)

]
. (4.29)

Geng et al. (2004) use estimates of the LECs in the
anomalous sector from vector meson dominance and the
chiral quark model. Their results can be summarized as:

(V0)p4+p6 = 0.078± 0.005, (4.30)

λ̃ = 0.3± 0.1. (4.31)

Our estimate of the uncertainty was obtained by looking
at the spread in results obtained within different models.
The contributions of O(p6) to A(W 2) were worked out

first by Geng et al. (2004). They involve two-loop graphs
with insertion of the lowest-order CHPT Lagrangian L2,
one-loop graphs with one insertion of L4, and tree-level
graphs from L6. Geng et al. (2004) find that A(W 2) is
essentially flat in W 2 and receives a correction of about
20% in the normalization, with an uncertainty induced
by the LECs at the percent level [the subscript 0 indicates
that we quote the W -independent part of A(W 2)]:

(A0)p4+p6 = 0.034. (4.32)

The O(p6) corrections are of the expected size for both
V and A form factors.
Experimentally, the Ke2γ mode provides the best con-

straint on the combination V0 + A0 (Nakamura et al.,
2010). The data are dominated by the 1484± 63 events
collected by KLOE (Ambrosino et al., 2009a) in the
range 10 MeV < Ecms

γ < 250 MeV. A fit to the mea-
sured spectrum leads to the results

V0 +A0 = 0.125± 0.007stat ± 0.001syst,

λ̃ = 0.38± 0.20stat ± 0.02syst, (4.33)

which are in excellent agreement with the O(p6) CHPT
predictions [from the work of Geng et al. (2004) we ex-
tract (V0 + A0)p4+p6 = 0.112 ± 0.005, where the uncer-
tainty captures the model dependence in the LECs en-
tering the p6 calculation]. However, the Kµ2γ extraction
of the combination V0 + A0 differs from the Ke2γ value
at the three-sigma level (Adler et al., 2000):

V0 +A0 = 0.165± 0.007stat ± 0.011syst. (4.34)

Until very recently, the combination V0 −A0 was only
loosely constrained by Kℓ2γ measurements, the best de-
termination, V0 − A0 = 0.077 ± 0.028 (consistent with
CHPT), coming from K → µνe+e− (Poblaguev et al.,
2002). The situation has changed with the recent re-
sults from ISTRA+ reported in Tchikilev et al. (2010)
and Duk et al. (2011). They studied the Kµ2γ mode in a
kinematic region in which the interference terms can be

extracted, thus providing direct sensitivity to the com-
bination V0 − A0. Different analyses assuming constant
form factors lead to (Tchikilev et al., 2010)

V0 −A0 = 0.126± 0.027stat ± 0.047syst, (4.35)

and (Duk et al., 2011)

V0 −A0 = 0.21± 0.04stat ± 0.04syst, (4.36)

respectively, about 1.5 and 3 sigmas above the CHPT
prediction V0 − A0 = 0.044 ± 0.010, where we take as
uncertainty the difference between the central values at
O(p6) and O(p4). At this stage it is clearly premature to
claim a serious tension between data and theory.

C. Kℓ3

The photon-inclusive decay rate for all four K → πℓν
modes (K = K±,K0,K0; ℓ = e, µ) can be written as

ΓKℓ3(γ)
=

G2
F |Vus|2M5

K C2
K

128 π3
SEW |fK0π−

+ (0)|2

× I
(0)
Kℓ(λi)

(
1 + δKℓ

EM + δKπ
SU(2)

)
. (4.37)

The Clebsch-Gordan coefficient CK differs for neutral
and charged kaons (CK = 1 for K0

ℓ3 and CK = 1/
√
2

for K+
ℓ3), while I

(0)
Kℓ is a phase space integral depending

on slope and curvature of the form factors fKπ
± (t), de-

fined by the QCD matrix elements

〈π(pπ)|s̄γµu|K(pK)〉 = (4.38)

(pπ + pK)µ f
Kπ
+ (t) + (pK − pπ)µ f

Kπ
− (t),

where t = (pK − pπ)
2 = (pℓ + pν)

2. As usual, the vector
form factor of the K0 decay at zero momentum transfer
has been pulled out in Eq. (4.37). The strong isospin-
breaking correction is defined as

δKπ
SU(2) =

(
fKπ
+ (0)/fK0π−

+ (0)
)2 − 1. (4.39)

The long-distance electromagnetic corrections

δKℓ
EM = δKℓ

EM(D3) + δKℓ
EM(D4−3) (4.40)

receive contributions from three-particle and four-
particle final states. In the following sections we review
the theoretical quantities appearing in the expression of
the decay rate and then combine this information with
experimental input to extract the CKM element Vus.

1. Electromagnetic effects in Kℓ3(γ) decays

The calculation of the electromagnetic contributions
to O(e2p2) in Kℓ3 decays using the methods of CHPT
with virtual photons and leptons (Knecht et al., 2000)
was presented in Cirigliano et al. (2002). Based on



12

TABLE II Electromagnetic corrections to Kℓ3 decay rates
(Cirigliano et al., 2008b). D3 refers to three-particle phase
space, D4 to four-body kinematics.

δKℓ
EM(D3)(%) δKℓ

EM(D4−3)(%) δKℓ
EM(%)

K0
e3 0.50 0.49 0.99 ± 0.22

K±
e3 −0.35 0.45 0.10 ± 0.25

K0
µ3 1.38 0.02 1.40 ± 0.22

K±
µ3 0.007 0.009 0.016 ± 0.25

this analysis, full numerical results on the Ke3 de-
cay modes were given in Cirigliano et al. (2004b),
adopting a specific prescription for treating real pho-
ton emission and a specific factorization scheme for
soft photons. This approach resulted in the par-
tial inclusion of higher-order terms in the chiral ex-
pansion. In a recent publication (Cirigliano et al.,
2008b), the numerical analysis of electromagnetic cor-
rections was extended to a complete study of Kµ3 de-
cays. At the same time, previous results for the Ke3

modes were updated using the new estimates of elec-
tromagnetic LECs (Ananthanarayan and Moussallam,
2004; Descotes-Genon and Moussallam, 2005) that affect
the structure-dependent electromagnetic contributions.
Rather than using the soft-photon factorization proce-
dure of Cirigliano et al. (2002), the analysis was per-
formed at fixed chiral order e2p2.

Table II summarizes the numerical results for the
long-distance radiative corrections. Two characteristic
features can be understood by qualitative arguments.
Firstly, the electromagnetic corrections for the neutral K
decays are expected to be positive and sizable on account
of the final-state Coulomb interaction between ℓ+ and
π− producing a correction factor of πα/vrelℓ+π− ∼ 2%
over most of the Dalitz plot. While the exact correction
and the relative size of K0

µ3 and K0
e3 depend on other

effects such as the emission of real photons, the qual-
itative expectation based on the Coulomb interaction
is confirmed by the detailed calculation. Secondly,

the large hierarchy δKµ
EM(D4−3) ≪ δKe

EM(D4−3) admits
a simple interpretation in terms of bremsstrahlung off
the charged lepton in the final state. The probability of
emitting soft photons is a function of the lepton velocity
vℓ which becomes logarithmically singular as vℓ → 1,
thus enhancing the electron emission. For typical values
of vℓ in D4−3, the semiclassical emission probability

implies δKe
EM(D4−3)/δ

Kµ
EM(D4−3) ∼ 20 → 40.

The theoretical uncertainties assigned to the δKℓ
EM in

Table II arise from two sources: the input parameters
(LECs and form factor parameters) used in the calcula-
tion and unknown higher-order terms in the chiral ex-
pansion (the latter would require a complete analysis at

order e2p4). For a detailed discussion of the error esti-
mate, we refer to Cirigliano et al. (2008b).
The differential decay distribution can be written in

the form

d2Γ

dy dz
=

G2
F |Vus|2M5

K C2
K

128 π3
SEW |fKπ

+ (0)|2

×
[
ρ̄(0)(y, z) + δρ̄EM(y, z)

]
, (4.41)

where the Lorentz invariants y = 2pK ·pℓ/M2
K = 2Eℓ/MK

and z = 2pπ · pK/M2
K = 2Eπ/MK are related to the en-

ergy of the charged lepton and of the pion, respectively,
measured in the rest frame of the kaon. Here ρ̄(0)(y, z)
represents the Dalitz plot density in absence of electro-
magnetic corrections, while δρ̄EM(y, z) accounts for elec-
tromagnetic effects. Illustrative figures displaying the
relative size of the electromagnetic corrections over the
Dalitz plot can be found in Cirigliano et al. (2008b). It
turns out that the corrections to the Dalitz distributions
can be locally quite large (∼ 10%) and do not have a def-
inite sign, implying cancellations in the integrated total
electromagnetic corrections.

2. Quark mass ratios and Kℓ3 decays

The isospin-breaking correction to Kℓ3 decays takes
the form (Cirigliano et al., 2002)

δK
±π0

SU(2) = 2
√
3
(
ε(2) + ε

(4)
S + ε

(4)
EM + . . .

)
. (4.42)

It is dominated by the lowest-order π0–η mix-
ing angle ε(2) defined in Eq. (4.11). The NLO

corrections ε
(4)
S (order p4) and ε

(4)
EM (order e2p2)

were computed in Gasser and Leutwyler (1985b) and
Neufeld and Rupertsberger (1995), respectively. The ex-
plicit expressions for these quantities can be found in
Cirigliano et al. (2002). The dots refer to NNLO contri-
butions (arising at order p6), for which the latest results
can be found in Bijnens and Ghorbani (2007b). Working
strictly to O(p4) in CHPT and neglecting the tiny con-

tribution ε
(4)
EM, one can relate δK

±π0

SU(2) to quark mass ratios

by

δK
±π0

SU(2) =
3

2

1

Q2

[
M2

K

M2
π

+
χp4

2

(
1 +

ms

m̂

)]
, (4.43)

where Q2 = (m2
s − m̂2)/(m2

d −m2
u) = R (ms/m̂ + 1)/2,

MK,π are the isospin-limit meson masses and χp4 = 0.219

is a calculable loop correction. Thus, δK
±π0

SU(2) is essen-

tially determined by Q2 (the uncertainty in ms/m̂ affects

δK
±π0

SU(2) negligibly due to the smallness of χp4).

The standard strategy up to now has been to use
all known information on light quark masses to predict

δK
±π0

SU(2) using Eq. (4.43). The double ratio Q2 can be
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expressed in terms of meson masses and a purely electro-
magnetic contribution (Gasser and Leutwyler, 1985a),

Q2 =
∆KπM

2
K

(
1 +O(m2

q)
)

M2
π

[
∆K0K+ +∆π+π0 − (∆K0K+ +∆π+π0)EM

] ,

(4.44)
where ∆PQ = M2

P − M2
Q. The electromagnetic

term (∆K0K+ + ∆π+π0)EM vanishes to lowest order
e2p0 (Dashen, 1969). A calculation at O(e2p2) gives
(Neufeld and Rupertsberger, 1995; Urech, 1995)

(∆K0K+ +∆π+π0)EM = e2M2
K

[
16ZLr

5(µ)

+
4

3
(K5 +K6)

r(µ) − 8(K10 +K11)
r(µ) (4.45)

+
1

4π2

(
3 ln

M2
K

µ2
− 4 + 2 ln

M2
K

µ2

)]
+O(e2M2

π).

The current estimates
(Ananthanarayan and Moussallam, 2004) of the
electromagnetic LECs appearing in this expres-
sion imply a large deviation from Dashen’s limit,
(∆K0K+ + ∆π+π0)EM = −1.5∆π+π0 , which implies
Q = 20.7 ± 1.2 (Kastner and Neufeld, 2008). Such a
small value of Q [compared to Q = 22.7 ± 0.8 given
by Leutwyler (1996)] was also supported by other
studies [Q = 22.0 ± 0.6 in Bijnens and Prades (1997)
and Q ≃ 20 in Amorós et al. (2001)]. It should be
noted, however, that the rather large value Q = 23.2
was obtained from an analysis of η → 3π at two loops
(Bijnens and Ghorbani, 2007a). On the other hand,
the non-lattice determinations of the second input
parameter ms/m̂ ∼ 24 have remained rather stable
over the last years. Combining Q = 20.7 ± 1.2 with
ms/m̂ = 24.7 ± 1.1, Kastner and Neufeld (2008) found

R = 33.5± 4.3 and finally δK
±π0

SU(2) = 0.058± 0.008.

It is worth stressing that the present precision of
the decay rates and of the radiative corrections permits

also an “experimental” determination of δK
±π0

SU(2) , which

can be used as a constraint on the quark mass ratio
Q via the formula (4.43). Combining recent Kℓ3 data
(Antonelli et al., 2010b) with the expression

δK
±π0

SU(2) =
2ΓK+

ℓ3

ΓK0
ℓ3

IK0ℓ

IK+ℓ

(
MK0

MK+

)5

− 1 −
(
δK

+ℓ
EM − δK

0ℓ
EM

)
,

(4.46)

one obtains δK
±π0

SU(2) exp = 0.054 ± 0.008, in perfect agree-

ment with the value obtained from quark mass ratios.
Alternatively, one may use the Nf = 2 + 1 lattice av-

erage (Colangelo et al., 2011) ms/m̂ = 27.4 ± 0.4 being
considerably larger than the values obtained with non-
lattice methods. Combined with Q = 22.8 ± 1.2 from

the same data compilation, Eq. (4.43) yields δK
±π0

SU(2) =

0.048±0.006, still consistent with the experimentally de-
termined result.

3. Form factors and phase space integrals

Calculation of the phase space integrals IKℓ requires
knowing the momentum dependence of the form factors.
The vector form factor fKπ

+ (t) defined in Eq. (4.38) re-
presents the p-wave projection of the crossed-channel ma-
trix element 〈0|s̄γµu|Kπ〉 whereas the s-wave projection
is described by the scalar form factor

f0(t) = f+(t) +
t

M2
K −M2

π

f−(t). (4.47)

It is convenient to normalize all the form factors to
fK0π−

+ (0) (denoted f+(0) in the following). In terms

of the normalized form factors f̄i(t) ≡ fi(t)/f+(0), the
phase space integrals read

IKℓ =
2

3

∫ t0

m2
ℓ

dt

M8
K

λ̄3/2
(
1 +

m2
ℓ

2t

) (
1− m2

ℓ

2t

)2

×
(
f̄2
+(t) +

3m2
ℓ∆

2
Kπ

(2t+m2
ℓ )λ̄

f̄2
0 (t)

)
, (4.48)

with λ̄ = (t− (MK +Mπ)
2)(t− (MK −Mπ)

2).
Traditionally, a polynomial parametrization has been

used for the form factors,

f̄+,0(t) = 1+ λ′+,0

t

M2
π+

+
1

2
λ′′+,0

(
t

M2
π+

)2

+ . . . , (4.49)

where λ′+,0 and λ′′+,0 are the slope and curvature, re-
spectively. Fits to the experimental distributions of Kℓ3

decays allow to extract the parameters λ′+, λ
′′
+, and

λ′0. The resulting uncertainty on the phase space in-
tegrals is at the level of 0.12% for IKe and 0.30% for
IKµ (Antonelli et al., 2010b). This affects the extraction
of Vus at the level of 0.06% (Ke3) and 0.15% (Kµ3).
Other form factor parametrizations have been pro-

posed, in which, by using physical inputs, specific rela-
tions between the slope, the curvature and all the higher-
order terms of the Taylor expansion (4.49) are imposed.
This allows to reduce the correlations between the fit-
ted slope parameters: only one parameter is fitted for
each form factor. Explicit examples used to analyze data
include the pole parametrization, dispersive parametriza-
tions (Abouzaid et al., 2010; Bernard et al., 2006, 2009),
and the so-called z-parametrization (Hill, 2006).

4. The Kℓ3 scalar form factor

SM predictions for the slope parameter λ′0 of the
scalar form factor of Kℓ3 decays were obtained by us-
ing different approaches. In the isospin limit, the
combination of a two-loop result in chiral perturba-
tion theory (Bijnens and Talavera, 2003) with an up-
dated estimate of the relevant p6 low-energy couplings
based on Cirigliano et al. (2005) and Cirigliano et al.

(2003b) gave the result λ′0 = (13.9+1.3
−0.4 ± 0.4) × 10−3

(Kastner and Neufeld, 2008).
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Dispersive methods were employed by several authors.4

Typical numbers for the resulting scalar slope parameter
are: λ′0 = (14.7 ± 0.4)× 10−3, (Jamin et al., 2006), and
λ′0 = 13.71× 10−3 (Bernard et al., 2011).
The low-energy theorem of Callan and Treiman

(Callan and Treiman, 1966; Dashen and Weinstein,
1969) predicts the size of the scalar Kℓ3 form factor at
the (unphysical) momentum transfer t = ∆Kπ,

f0(∆Kπ) = FK/Fπ +∆CT, (4.50)

with a correction term of O(mu,md, e
2). In the isospin

limit (mu = md, e = 0), and at first non-leading or-
der, the tiny value ∆CT = −3.5 × 10−3 was com-
puted by Gasser and Leutwyler (1985b). A discussion
of higher-order effects on this quantity can be found
in Bijnens and Talavera (2003) and Kastner and Neufeld
(2008). Note that the constraint at the Callan-Treiman
point plays an essential role in the dispersive anal-
ysis of the scalar form factor (Bernard et al., 2006;
Bernard and Passemar, 2008; Jamin et al., 2004, 2006).
The effect of isospin violation and electromagnetic cor-

rections has also been considered (Kastner and Neufeld,
2008). This introduces an additional uncertainty
for the values of the slope parameters of at most
±10−3, mainly due to not yet fully determined low-
energy couplings. Combining the loop results given by
Bijnens and Ghorbani (2007b) with an estimate of the
relevant low-energy couplings, the difference of the slope
parameters of the neutral and charged kaons was found
(Kastner and Neufeld, 2008) to be confined to the rather
small range 0 <∼ λ′0(K

0
ℓ3)− λ′0(K

±
ℓ3)

<∼ 10−3.
The present experimental situation is displayed in Ta-

ble III. Note that the numbers5 shown here are those
where the quadratic parametrization (4.49) has been
used for the simultaneous determination of the vector
form factor. The KTeV data were also reanalyzed by
Abouzaid et al. (2010) using the dispersive parametriza-
tion. The results λ′0 = (13.22 ± 1.39) × 10−3 (KLµ3

only) and λ′0 = (12.95 ± 1.17) × 10−3 (KLµ3 + KLe3)
are rather close to the corresponding numbers given in
Table III. The analogous procedure for the KLOE data
(Ambrosino et al., 2007) gave λ′0 = (14.0 ± 2.1) × 10−3

(KLµ3 +KLe3).
The experimental results for the scalar slope parameter

found by ISTRA+, KTeV and KLOE are in agreement
with the predictions of the SM. On the other hand, the
value found by NA48 can hardly be reconciled with the
theoretical numbers. Furthermore, an isospin violation
of the size as it would be suggested by the simultaneous
validity of the ISTRA+ and NA48 results cannot be ex-
plained within the SM (Kastner and Neufeld, 2008). A

4 See for instance Jamin et al. (2002), Jamin et al.

(2004), Jamin et al. (2006), Bernard et al. (2006),
Bernard and Passemar (2008), Bernard et al. (2009),
Bernard et al. (2011), Abbas et al. (2010).

5 The ISTRA+ result has been rescaled by M2
π+/M2

π0 .

TABLE III Experimental results for the slope parameter of
the scalar Kℓ3 form factor, in units of 10−3.

Experiment λ′
0 Ref.

ISTRA+ (K−
µ3) 17.1± 2.2 Yushchenko et al. (2004)

KTeV (KLµ3) 12.8± 1.8 Alexopoulos et al. (2004)

KTeV (KLµ3 +KLe3) 13.7± 1.3 Alexopoulos et al. (2004)

NA48 (KLµ3) 9.5± 1.4 Lai et al. (2007)

KLOE (KLµ3) 9.1± 6.5 Ambrosino et al. (2007)

KLOE (KLµ3 +KLe3) 15.4± 2.2 Ambrosino et al. (2007)

clarification of the origin of these puzzling results in Kµ3

decays would be highly welcome (Leutwyler, 2009).

5. SU(3) breaking effects in fK0π−

+ (0)

The value of the K0
ℓ3 form factor at zero momentum

transfer, fK0π−

+ (0) ≡ f+(0), is the missing theoretical
ingredient for the extraction of Vus. Within CHPT we
can break up the form factor according to its expansion
in quark masses:

f+(0) = 1 + fp4 + fp6 + . . . . (4.51)

Deviations from unity (the octet symmetry limit) are of
second order in SU(3) breaking (Ademollo and Gatto,
1964; Behrends and Sirlin, 1960). The first correction
arises at O(p4) in CHPT: a finite one-loop contribu-
tion (Gasser and Leutwyler, 1985b; Leutwyler and Roos,
1984) determines fp4 = −0.0227 in terms of Fπ, MK

and Mπ, with essentially no uncertainty. The p6 term
was first estimated by Leutwyler and Roos (1984) in the
quark model framework, leading to

f+(0)LR = 0.961± 0.008. (4.52)

Within CHPT, fp6 receives contributions from two-
loop diagrams, one-loop diagrams with insertion of one
vertex from the p4 effective Lagrangian, and tree-level
diagrams with two insertions from Lp4 or one from Lp6

(Bijnens and Talavera, 2003; Post and Schilcher, 2002):

fp6 = f2−loop
p6 (µ) + fLi×loop

p6 (µ) + f tree
p6 (µ) . (4.53)

Individual components depend on the chiral renormaliza-
tion scale µ, their sum being scale independent. Using
µ = Mρ = 0.77 GeV, one has (Bijnens and Talavera,

2003) f2−loop
p6 (Mρ) + fLi×loop

p6 (Mρ) = +0.0093± 0.0005.

The p6 constants appearing in f tree
p6 could be determined

phenomenologically (Bijnens and Talavera, 2003), pro-
vided the experimental errors on the slope and curvature
of the scalar form factor reach the level ∆λ′0 ∼ 0.001 and
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∆λ′′0 ∼ 0.0001, which is unfortunately not achievable in
the near future. Therefore, further theoretical input on
f+(0) is needed.
In Cirigliano et al. (2005) a (truncated) large-NC es-

timate of f tree
p6 was performed. It was based on match-

ing a meromorphic approximation to the 〈SPP 〉 Green
function (with poles corresponding to the lowest-lying
scalar and pseudoscalar resonances) onto QCD by im-
posing the correct large-momentum fall-off, both off-shell
and on one- and two-pion mass shells. The uncertainty
was estimated by varying the matching scale in the range
µ ∈ [Mη, 1GeV], leading to

f+(0)CHPT+1/NC
= 0.984± 0.012. (4.54)

Finally, starting with the work of Bećirević et al.
(2005) it has been realized that lattice QCD is a pow-
erful tool to estimate f+(0) at a level of accuracy in-
teresting for phenomenological purposes. Unquenched
results are now available with both Nf = 2 + 1 and
Nf = 2 (Boyle et al., 2008, 2010; Brommel et al., 2007;
Dawson et al., 2006; Lubicz et al., 2009; Tsutsui et al.,
2006). The lattice results agree quite well with
the Leutwyler-Roos estimate, while the analytic ap-
proaches tend to be higher as a consequence of includ-
ing the large and positive (∼ 0.01) two-loop effects
(Bijnens and Talavera, 2003). In coming years lattice
calculations will be performed closer and closer to the
physical light quark masses and improved chiral extrap-
olations can be expected. For our phenomenological
extraction of Vus we take as reference value the most
recent lattice result with Nf = 2 + 1 dynamical fla-
vors (Boyle et al., 2010), which is also the most precise
result for f+(0),

f+(0)RBC/UKQCD = 0.9599(34)(+31
−47)(14), (4.55)

where the first error is statistical, the second is due to the
uncertainties in the chiral extrapolation and the third is
an estimate of discretization effects. Currently the domi-
nant systematic uncertainty arises from the extrapolation
of lattice results, obtained with unphysical quark masses,
to physical light quark masses (Bernard and Passemar,
2010). More progress on f+(0) is expected soon from
other lattice collaborations.

6. Determination of Vus and CKM unitarity tests

The combination |Vus|f+(0) can be extracted from
both charged and neutral K decays and its value is dom-
inated by K0 modes (see Fig. 2). Using the experimental
averages from Antonelli et al. (2010a), one obtains

|Vus|f+(0) = 0.2163± 0.0005. (4.56)

Taking as a reference value for f+(0) the lattice result of
Boyle et al. (2010), |Vus| is given by

|Vus|(Kℓ3) = 0.2255± 0.0005exp ± 0.0012th, (4.57)

0.213 0.214 0.215 0.216 0.217

0.213 0.214 0.215 0.216 0.217

KL e3

KL µ3

KS e3

K± e3

K± µ3

FIG. 2 Compilation of values for |Vus|f+(0) extracted from all
Kℓ3 channels. The vertical band denotes the average. From
Antonelli et al. (2010a).

where we have explicitly displayed the current experi-
mental and theoretical uncertainties [dominated by
f+(0)]. A smaller value would be obtained with the
analytical f+(0) value in Eq. (4.54). As discussed by
Antonelli et al. (2010a), one can perform a fit to |Vud|
and |Vus| using as input the values of |Vus| from Kℓ3

decays [Eq. (4.57)], |Vus/Vud| from Kℓ2/πℓ2 [Eq. (4.17)],
and |Vud| = 0.97425± 0.00022 from superallowed nuclear
β transitions (Hardy and Towner, 2009). The outcome
is (Cirigliano and Neufeld, 2011)

|Vud| = 0.97425± 0.00022,

|Vus| = 0.2256± 0.0009, (4.58)

with χ2/ndf = 0.012 and negligible correlations between
|Vud| and |Vus|. Fig. 3 provides a graphical represen-
tation of the various constraints in the |Vus| – |Vud|
plane and the 1σ fit region. These values [together
with the negligible contribution from |Vub| = 0.00393(36)
(Antonelli et al., 2010b)] can be used to perform a very
stringent test of CKM unitarity or, equivalently, of the
universality of quark and lepton weak charged-current
couplings. For the first-row unitarity sum we find

∆CKM = |Vud|2+ |Vus|2 + |Vub|2 − 1 = 0.0001(6). (4.59)

This constraint allows one to set bounds on the effective
scale of operators that parametrize new-physics contri-
butions to ∆CKM (Cirigliano et al., 2010). The effective
scale is constrained to be Λ > 11 TeV (90% C.L.), which
puts this low-energy constraint at the same level as the
bounds from Z-pole measurements.
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FIG. 3 Graphical representation of the current status of |Vud|,
|Vus| and the corresponding CKM unitarity test. The horizon-
tal band represents the constraint from Kℓ3 decays, the thin
vertical band the constraint from 0+ → 0+ nuclear decays, the
oblique band the constraint from Kµ2/πµ2, and the ellipse is
the 1σ fit region. From Cirigliano and Neufeld (2011).

7. T violation in Kµ3 decays

The transverse muon polarization in Kµ3 decays

PT =
~sµ · (~pπ × ~pµ)

|~pπ × ~pµ|
(4.60)

violates T in the absence of final-state interactions (FSI)
(D’Ambrosio and Isidori, 1998). In the case of KL →
π−µ+ν, with two charged particles in the final state, the
electromagnetic interaction generates 〈PT 〉FSI ∼ 10−3

(Okun and Khriplovich, 1968). In K±
µ3 decays, this effect

does not exceed 10−5 (Efrosinin et al., 2000; Zhitnitsky,
1980) and T-violating effects could be important.

The SM CP-violating contribution to PT is very small
∼ 10−7 (Bigi and Sanda, 2000; Cheng, 1983). Therefore,
the measurement of the transverse polarization of muons
inK±

µ3 is regarded as a sensitive probe for physics beyond

the SM (Kohl, 2010; Paton et al., 2006).

The present experimental value (Abe et al., 2006)

PT = −0.0017± 0.0023stat ± 0.0011syst (4.61)

is consistent with no T violation and corresponds to the
limit |PT | < 0.0050 (90%C.L.). The sensitivity of TREK
(Kohl, 2010; Paton et al., 2006) will be able to improve
this current upper limit by at least a factor 20.

K0

π−

γ

W
e+

νe

a) b)

FIG. 4 Diagrams describing the K0
ℓ3γ amplitude.

D. Kℓ3γ

The radiative Kℓ3γ decays (ℓ = e, µ)

K+(p) → π0(p′)ℓ+(pℓ)νℓ(pν)γ(q),

K0(p) → π−(p′)ℓ+(pℓ)νℓ(pν)γ(q) (4.62)

allow us to perform quantitative tests of CHPT, thanks to
theoretical developments over the past couple of decades
as well as recent and ongoing high-statistics experimental
studies. The decay amplitude can be written as [we focus
for definiteness on K0

e3γ , the generalization is straightfor-
ward and can be found in Bijnens et al. (1993)]:

T (K0
e3γ) =

GF√
2
eV ∗

usǫµ(q)
∗ (4.63)

×
[
(Vµν −Aµν) ū(pν)γ

ν(1− γ5)v(pe)

+
Fν

2pe · q
ū(pν)γ

ν(1− γ5)
(
me − /pe − /q

)
γµv(pe)

]
,

where the first and second terms correspond to diagrams
a) and b), respectively, in Fig. 4. The hadronic matrix
elements are defined by (J = V,A)

Jµν = i

∫
dx eiqx〈π−(p′)|T (V em

µ (x)Jw
ν (0))|K0(p)〉,

Fµ = 〈π−(p′)|V w
µ (x)|K0(p)〉, (4.64)

with the weak and electromagnetic currents defined in
Eq. (4.23). The Ward identities qµ Vµν = Fν and
qµAµν = 0 guarantee the gauge invariance of the total
amplitude.

The total amplitude can be decomposed into an “inner-
bremsstrahlung” (IB) and a “structure-dependent” (SD)
part, both gauge invariant. IB captures the infrared
singularities according to the Low (1958) theorem and
the SD part contains terms of O(q) and higher. In
Gasser et al. (2005) this decomposition was performed in
such a way as to guarantee that the SD amplitude is regu-
lar in the Mandelstam plane, except for the branch points
required by unitarity. In this treatment the tensor Vµν
has an IB component calculable in terms of Kℓ3 form fac-
tors f± and a purely SD component, while the tensor Aµν
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is purely SD. The SD amplitudes can be parametrized in
terms of eight structure functions Vi, Ai (i = 1, . . . , 4).
Defining W = p− p′ − q, one has (Gasser et al., 2005):

ASD
µν = iǫµνρσ (A1 p

′ρqσ +A2 q
ρW σ)

+ iǫµλρσ p
′λqρW σ (A3Wν +A4 p

′
ν) , (4.65)

V SD
µν = V1

(
p′µqν − gµνp

′ · q
)
+ V2 (Wµqν − gµνW · q)

+ V3
(
q ·Wp′µWν − p′ · qWµWν

)

+ V4
(
q ·Wp′µp

′
ν − p′ · qWµp

′
ν

)
. (4.66)

Early theoretical calculations of Kℓ3γ were based on
Low’s theorem and current algebra (Fearing et al., 1970).
Modern calculations (Bijnens et al., 1993; Gasser et al.,
2005; Holstein, 1990; Kubis et al., 2007) have been per-
formed within CHPT, which provides a natural frame-
work to systematically expand the hadronic amplitudes
Fµ, Aµν , and Vµν . The chiral expansion for Vµν contains
both IB and SD terms and starts at O(p2). Aµν starts
at O(p4), with the leading contribution generated by
the WZW functional (Wess and Zumino, 1971; Witten,
1983) accounting for the chiral anomaly.

The first complete analysis to O(p4) was performed
by Bijnens et al. (1993) who calculated the branching
ratios for all Kℓ3γ modes for given cuts in the photon
energy and in the photon-electron opening angle in the
kaon rest frame: E∗

γ > Ecut
γ , θ∗eγ > θcuteγ . Recently, the

CHPT analysis was revisited and extended to O(p6) for
K0

e3γ (Gasser et al., 2005) andK±
e3γ decays (Kubis et al.,

2007), which represent the theoretical state of the art. To
O(p4) the axial form factors Ai are constant, while the
vector form factors Vi receive contributions from both
LECs (Lr

9,10) and loops. Since all cuts in loop func-
tions lie far outside the physical region, the Vi are con-
stant to good accuracy. In order to gain control on the
size of higher-order corrections, Gasser et al. (2005) and
Kubis et al. (2007) performed a complete p6 analysis of
the axial terms Ai (one loop) and determined the O(p6)
Li×Lj contributions to the vector terms Vi. Despite the
appearance of cuts in the physical region, to O(p6) the
real parts of Vi and Ai are well approximated by smooth
functions, with dominant uncertainties coming from the
O(p6) LECs.

The updated theoretical analysis (Gasser et al., 2005;
Kubis et al., 2007) leads to very stable predictions for the
relative branching ratios defined by

RKe3γ (E
cut
γ , θcuteγ ) ≡

ΓKe3γ (E
∗
γ > Ecut

γ , θ∗eγ > θcuteγ )

ΓKe3

.

(4.67)
It turns out that this ratio is very insensitive to the details
of the non-radiativeKℓ3 form factor f+(t). Moreover, the
SD terms contribute only a ∼ 1% correction to the IB
result for R. The final predictions are (for representative

cuts6 for which experimental data are available):

RKL
e3γ

(Ecut
γ = 30MeV, θcuteγ = 20◦) = 0.0096(1), (4.68)

RK±

e3γ
(Ecut

γ = 10MeV, 26◦< θ∗eγ< 53◦) = 0.00559(6).

(4.69)

In order to measure the SD terms one needs to resort
to differential decay distributions. A natural first ob-
servable to consider is the photon spectrum dΓ/dE∗

γ . It
was found (Gasser et al., 2005; Kubis et al., 2007) that
in both charged and neutral modes the SD terms correct
the IB spectrum by one single function f(E∗

γ):

dΓ

dE∗
γ

≃ dΓIB

dE∗
γ

+ 〈X〉 f(E∗
γ), (4.70)

where 〈X〉 is a mode-dependent linear combination of
phase space averages of the SD terms 〈Vi〉 and 〈Ai〉. For
the K0

e3γ mode, 〈X〉 = −1.2± 0.4 is dominated by 〈V1〉.
In contrast, in the K±

e3γ mode 〈X〉 = −2.2 ± 0.7 re-

ceives contributions of similar size from 〈V1〉 and 〈A1〉,
thus making possible a detection of the effect of the chi-
ral anomaly. More complicated angular distributions
might be used to disentangle the dominant SD terms
(Gasser et al., 2005; Kubis et al., 2007).
In parallel to new theoretical developments, there has

been considerable experimental progress in these modes
in the past decade. While we refer to Nakamura et al.

(2010) for a complete experimental summary we focus
here on the Ke3γ decays. For the neutral mode, the
world average is dominated by four recent measure-
ments (Alavi-Harati et al., 2001b; Alexopoulos et al.,
2005; Ambrosino et al., 2008; Lai et al., 2005) that are
not fully consistent (scale factor S = 1.9):

RKL
e3γ

(Ecut
γ = 30MeV, θcuteγ = 20◦) = 0.935(15)× 10−2.

(4.71)

This PDG average (Nakamura et al., 2010) is about
one sigma below the theoretical prediction given in
Eq. (4.68). The most recent individual measurement
from KLOE (Ambrosino et al., 2008),

RKL
e3γ

= (0.924± 0.023stat ± 0.016syst)× 10−2, (4.72)

does not have sufficient precision to resolve the tension
between the NA48 result R = (0.964 ± 0.013) × 10−2

(Lai et al., 2005) and the KTeV result R = (0.916 ±
0.017) × 10−2 (Alexopoulos et al., 2005). By mea-
suring the photon spectrum, the KLOE collaboration
(Ambrosino et al., 2008) performed a fit to the SD con-
tribution 〈X〉, finding

〈X〉 = −2.3± 1.3stat ± 1.4syst, (4.73)

6 For more choices see Gasser et al. (2005) and Kubis et al. (2007).
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in agreement (within the large uncertainty) with the
CHPT prediction 〈X〉 = −1.2± 0.4.
For the charged mode, the PDG average

(Nakamura et al., 2010) is dominated by three mea-
surements (Akimenko, 2007; Barmin et al., 1991;
Bolotov et al., 1986), again not fully consistent (scale
factor S = 1.3):

RK±

e3γ
(Ecut

γ = 10MeV, 26◦< θ∗eγ< 53◦) = 0.00505(32).

(4.74)

This value is about one sigma below the theoretical pre-
diction given in Eq. (4.69).
Despite the tremendous progress in Kℓ3γ decays, from

the comparison of theory and experiment we conclude
that more accurate experimental data are desirable in
order to perform definite tests of the CHPT predictions
and to detect SD contributions.

E. Kℓ4

Kℓ4 is the shorthand notation for the decays

K+(p) → π+(p1)π
−(p2)ℓ

+(pℓ)νℓ(pν), (4.75)

K+(p) → π0(p1)π
0(p2)ℓ

+(pℓ)νℓ(pν), (4.76)

K0(p) → π0(p1)π
−(p2)ℓ

+(pℓ)νℓ(pν) (4.77)

and their charge-conjugate modes. In the isospin limit
(mu = md, e = 0), the amplitude for (4.75) is given by

T =
GF√
2
V ∗
us ū(pν)γ

µ(1− γ5)v(pℓ) (Vµ −Aµ), (4.78)

where the last factor contains the hadronic matrix el-
ements of the strangeness-changing vector and axial-
vector currents,

Vµ −Aµ = 〈π+(p1)π
−(p2) |s̄γµu− s̄γµγ5u|K+(p)〉,

(4.79)
with the form factor decompositions

Vµ = − H

M3
K

εµνρσ(pℓ + pν)
ν(p1 + p2)

ρ(p1 − p2)
σ, (4.80)

Aµ = − i

MK

[
F (p1 + p2)µ +G(p1 − p2)µ +R(pℓ + pν)µ

]
.

The matrix elements for the channels (4.76) and (4.77)
can be obtained by isospin symmetry. The form factors
F , G, R and H depend on the variables s = (p1 + p2)

2,
t = (p1 − p)2 and u = (p2 − p)2. Quite often,

s = (p1 + p2)
2, sℓ = (pℓ + pν)

2, cos θπ (4.81)

are used instead, where θπ is the angle of the π+ in the
center-of-mass system of the two charged pions relative
to the dipion line of flight in the rest system of the kaon
(Cabibbo and Maksymowicz, 1965, 1968).
The chiral expansion of the Kℓ4 form factors was

studied in CHPT at the one-loop level (Bijnens, 1990;

Riggenbach et al., 1991) and beyond (Amorós et al.,
2000a,b; Bijnens et al., 1994). Comparison with experi-
mental data yields information on several LECs.
The analysis of K± → π+π−e±ν is a very efficient and

clean approach to study pion-pion scattering at low en-
ergies. In the limit of isospin symmetry, one identifies
the ππ phase shifts in the matrix element in a standard
manner by performing a partial-wave expansion using
unitarity and analyticity. Details of this procedure can
be found in Pais and Treiman (1968a) and Berends et al.
(1967, 1968). At the end, it boils down to the following
parametrization of the form factors,

F = Fse
iδs + Fpe

iδp cos θπ + . . . ,

G = Gpe
iδp + . . . ,

H = Hpe
iδp + . . . , (4.82)

where the dots refer to neglected d-wave contributions.
Note that the third axial form factor R gets multiplied by
a factor m2

e/se and cannot be measured in Ke4 decays.
One is therefore left with one phase difference δ = δs−δp
and the four real form factors Fs, Fp, Gp, Hp.
Under the assumption of isospin symmetry, the form

factors can be expanded in a series of the dimen-
sionless invariants q2 = s/4M2

π − 1 and se/4M
2
π

(Amorós and Bijnens, 1999). Within the currently avail-
able statistics (Batley et al., 2010c), a constant term, two
slope parameters and one curvature parameter are suffi-
cient to describe the variation of the form factor Fs,

Fs = fs + f ′
sq

2 + f ′′
s q

4 + f ′
e

se
4M2

π

, (4.83)

while two terms are needed to describe Gp,

Gp = gp + g′pq
2. (4.84)

Fp and Hp can be described by two constants. Based
on an analysis of 1.13× 106 decays, the NA48/2 collab-
oration reports the following results for the form factor
measurements (Batley et al., 2010c):

f ′
s/fs = 0.152± 0.007± 0.005,

f ′′
s /fs = −0.073± 0.007± 0.006,

f ′
e/fs = 0.068± 0.006± 0.007,

fp/fs = −0.048± 0.003± 0.004,

gp/fs = 0.868± 0.010± 0.010,

g′p/fs = 0.089± 0.017± 0.013,

hp/fs = −0.398± 0.015± 0.008, (4.85)

with statistical (first) and systematic (second) errors.
A preliminary branching ratio based on the NA48/2

data has recently been presented (Bloch-Devaux, 2011),

BR(K± → π+π−e±ν) = (4.279± 0.035)× 10−5, (4.86)

which improves by a factor of 3 the PDG average (4.09±
0.10)× 10−5 (Nakamura et al., 2010). The final analysis
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will allow to give precise absolute values for all decay
form factors (Bloch-Devaux, 2011).
The extraction of the ππ scattering lengths from the

phase shift measurements of δ = δs − δp requires ad-
ditional theoretical ingredients. Forty years ago, Roy
(1971) established an integral equation based on analy-
ticity, unitarity and crossing that allows to predict the
ππ phase values close to threshold by using experimen-
tal data above the matching point (

√
s = 0.8GeV)

and two subtraction constants a0 and a2, the I =
0, 2 s-wave scattering lengths. On the other hand,
using measurements and the Roy equations, one can
determine the corresponding values of the scattering
lengths. Numerical solutions of the Roy equations
obtained by two groups (Ananthanarayan et al., 2001;
Descotes-Genon et al., 2002) were employed for this pur-
pose (Batley et al., 2010c).
Isospin-breaking turns out to be quite substantial in

Kℓ4 decays (Cuplov and Nehme, 2003; Nehme, 2004a,b,
2005). Triggered by the precise results of NA48/2
(Batley et al., 2008b), a new theoretical procedure for
the treatment of isospin-breaking on Ke4 phase measure-
ments was suggested by Colangelo et al. (2009). The
measured phase of the I = 0 s-wave is no longer δ00 but

ψ0 =
1

32πF 2

[
(4∆π+π0 + s)σ± + (s−M2

π0)
(
1 +

3

2R

)
σ0

]

+ O(p4). (4.87)

In this expression, F is the pion decay constant in the
limit of chiral SU(2), ∆π+π0 = M2

π± − M2
π0 , R is the

quark-mass ratio defined in Eq. (4.11) and

σx =
√
1− 4M2

π/s (x = ±, 0). (4.88)

Although the difference between the mass-symmetric
angle (∆π+π0 = 0, 1/R = 0, σ± = σ0) and ψ0 is rather
small (10 to 15 mrad) over the whole range accessible
in Ke4 decays, there are non-negligible effects on the ex-
traction of the scattering lengths (Batley et al., 2010c),
as can be seen in Figs. 5 and 6. Note that these ef-
fects had not been taken into account in the analyses of
the older Geneva-Saclay (Rosselet et al., 1977) and BNL
E865 (Pislak et al., 2001, 2003) experiments.

A two-parameter fit of the NA48/2 data leads to the
result (Batley et al., 2010c)

a0 = 0.2220± 0.0128± 0.0050± 0.0037,

a2 = −0.0432± 0.0086± 0.0034± 0.0028, (4.89)

where the errors refer to statistics, systematics and the-
ory. Alternatively, using the additional theoretical con-
straint (Colangelo et al., 2000, 2001a,b)

a2 = −0.0444+ 0.236(a0 − 0.220)− 0.61(a0 − 0.220)2

−9.9(a0 − 0.220)3 (4.90)
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FIG. 5 Measurements of the phase shift δ without (open cir-
cles) and with (full circles) isospin mass effect corrections from
NA48/2 Ke4 data. From Batley et al. (2010c), Copyright
CERN for the benefit of the NA48/2 Collaboration 2010.

(with a width of ±0.0008), a one-parameter fit was per-
formed giving (Batley et al., 2010c)

a0 = 0.2206± 0.0049± 0.0018± 0.0064, (4.91)

corresponding to the value a2 = −0.0442 from Eq. (4.90).
These results should be compared with the most pre-
cise prediction to NNLO in CHPT (Colangelo et al.,
2001a,b):

a0 = 0.220±0.005, a2 = −0.0444±0.0010. (4.92)

A measurement of K+ → π0π0e+ν by the KEK-E740
Collaboration with a data sample of 216 events was pub-
lished in Shimizu et al. (2004). However, due to large
systematic errors, this result was not included in the
PDG fit BR(K+ → π0π0e+ν) = (2.2 ± 0.4) × 10−5

(Nakamura et al., 2010), which uses data from an old
low-statistics experiment (Barmin et al., 1988). Based
on the analysis of 4.4× 105 K00

e4 events, the NA48/2 Col-
laboration has recently reported the preliminary branch-
ing ratio

BR(K± → π0π0e±ν) = (2.595± 0.042)× 10−5, (4.93)

which corresponds to a factor 10 improvement compared
to the PDG value. They could also show the consistency
of the Fs form factors in the K00

e4 and K+−
e4 modes.

Experimental results for KL → π±π0e∓νe are
also available (Batley et al., 2004a; Carroll et al., 1980;
Makoff et al., 1993). Although the present statistics
[5464 events in the experiment of Batley et al. (2004a)]
is not comparable with the charged mode, the branching
ratio and the form factors have been determined and a
value for the chiral LEC L3 was obtained:

L3 = (−4.1± 0.2)× 10−3. (4.94)
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FIG. 6 Fits of the NA48/2 Ke4 data in the (a0, a2) plane
without and with isospin mass effects. The wide band (UB)
refers to the “universal band” [see Batley et al. (2010c) and
Descotes-Genon et al. (2002) for details]. The large ellipses
are 68%C.L. contours of the two-parameter fit leading to
Eq. (4.89) and the circles the one-parameter fit of Eq. (4.91),
imposing the CHPT constraint of Eq. (4.90). The small el-
lipse corresponds to Eq. (4.92). Adapted from Batley et al.

(2010c).

The contribution of the decay chain K0 → (K+e−νe) →
π+π0e−νe is suppressed by at least four orders of magni-
tude in the branching ratio (Chizhov, 2007).

F. Ke5

Except for the charge-conjugate modes, there are four
kinematically allowed Ke5 decays:

K+ → π+π−π0e+νe, K+ → π0π0π0e+νe,

K0 → π0π0π−e+νe, K0 → π+π−π−e+νe, (4.95)

related by the isospin relation (Blaser, 1995)

2 Γ(K+ → π0π0π0e+νe) = (4.96)

Γ(K0
L → π±π∓π±e∓νe) − Γ(K0

L → π0π0π±e∓νe).

At lowest order in CHPT, only the vector current con-
tributes. Because of the small phase space, the branching
ratios are suppressed: O(10−12) for the K+ decays and
O(10−11) for the K0

L decays at leading order (Blaser,
1995). Experimentally, there is only an upper bound
(Nakamura et al., 2010)

BR(K+ → π0π0π0e+νe) < 3.5× 10−6. (4.97)

V. NONLEPTONIC DECAYS

In this section, we first review the status ofK → 2π de-
cays. NLO calculations including strong isospin breaking
and electromagnetic corrections allow for the extraction
of the lowest-order couplings G8, G27 in the nonleptonic
weak Lagrangian (2.16) from the decay rates. A careful
treatment of isospin violation is essential for a reliable
determination of the s-wave ππ phase shift difference
δ0(MK) − δ2(MK). Despite a lot of efforts, the accu-
racy of theoretical predictions of the ratio ǫ′/ǫ still does
not match the experimental precision. A NLO calcula-
tion of K → 3π decays significantly improves the com-
patibility between theory and experiment even though
some assumptions must be made about NLO LECs. Both
isospin-violating and CP-violating effects seem to be too
small to be detected experimentally at this time. Some-
what unexpected, investigation of a cusp effect in the
Mπ0π0 distribution near threshold in K → 3π decays has
led to very precise values for the s-wave ππ scattering
lengths.

A. K → ππ

The amplitudes for the two-pion decay modes can be
parametrized in the form

A(K0 → π+π−) = A+− = A1/2 +
1√
2

(
A3/2 +A5/2

)

= A0e
iχ0 +

1√
2
A2e

iχ2 ,

A(K0 → π0π0) = A00 = A1/2 −
√
2
(
A3/2 +A5/2

)

= A0e
iχ0 −

√
2A2e

iχ2 ,

A(K+ → π+π0) = A+0 =
3

2

(
A3/2 −

2

3
A5/2

)

=
3

2
A+

2 e
iχ+

2 . (5.1)

This parametrization holds for the infrared-finite am-
plitudes where the Coulomb and infrared parts are re-
moved from A+−, A+0 (Cirigliano et al., 2004a). The
amplitudes A∆I (∆I = 1/2, 3/2, 5/2) are generated by
the ∆I component of the electroweak effective Hamil-
tonian in the limit of isospin conservation. In the SM,
the ∆I = 5/2 piece is absent in the isospin limit. More
precisely, A5/2 = 0 in the absence of electromagnetic in-

teractions and therefore A2 = A+
2 . In the limit of CP

conservation, the amplitudes A0, A2 and A+
2 are real and

positive by definition. In the isospin limit, the phases
χI (I = 0, 2) can then be identified with the s-wave ππ
scattering phase shifts δI(

√
s =MK).

In the isospin limit (phase space is calculated with
physical meson masses), the amplitudes A0, A2 and the
phase difference χ0 − χ2 can be obtained directly from
the three K → ππ branching ratios [we use the recent
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compilation of Antonelli et al. (2010a)]:

A0 = (2.704± 0.001)× 10−7 GeV,

A2 = (1.210± 0.002)× 10−8 GeV,

χ0 − χ2 = (47.5± 0.9)◦. (5.2)

In the presence of isospin violation and to lowest order
in the chiral expansion, the amplitudes A∆I are given by
(omitting isospin violation in the 27-plet amplitudes)

A1/2 =

√
2

9
G27F0

(
M2

K0 −M2
π0

)

+
√
2G8F0

[ (
M2

K0 −M2
π0

)(
1− 2

3
√
3
ε(2)
)

− 2

3
e2F 2

0 (gewk + 2Z)

]
,

A3/2 =
10

9
G27F0

(
M2

K0 −M2
π0

)

+G8F0

[ (
M2

K0 −M2
π0

) 4

3
√
3
ε(2)

− 2

3
e2F 2

0 (gewk + 2Z)

]
,

A5/2 = 0. (5.3)

The various couplings are defined in Eqs. (2.16) and
(2.18). Following Cirigliano et al. (2004a), we have ex-
pressed all amplitudes in terms of the neutral pion and
kaon masses. The parameter F0 can be identified with
the pion decay constant Fπ at this order. The effect
of strong isospin breaking is entirely due to the lowest-
order π0–η mixing angle ε(2) given in Eq. (4.11). Electro-
magnetic interactions contribute through mass splitting
(terms proportional to Z) and insertions of gewk. As
a consequence of CPS symmetry (Bernard et al., 1985),
electromagnetic corrections to the octet weak Hamilto-
nian do not generate a ∆I = 5/2 amplitude at lowest
chiral order.
The NLO amplitudes in the isospin limit for both K →

ππ and K → 3π were first calculated by Kambor et al.
(1991). Their main conclusion was that the octet ampli-
tude A0 is strongly enhanced by final state interactions
at NLO whereas the 27-plet amplitude A2 is only mildly
reduced. Since the generically small isospin-violating
effects are enhanced in subdominant amplitudes with
∆I > 1/2 because of the ∆I = 1/2 rule, a systematic
treatment of isospin violation is called for.
The first complete analysis of isospin breaking in

K → ππ amplitudes was carried out by Cirigliano et al.

(2004a). References to earlier work can be found there.
The analysis was repeated and extended to K → 3π
amplitudes by Bijnens and Borg (2005b). In the follow-
ing, we update the analysis of Cirigliano et al. (2004a)
with new experimental input (Antonelli et al., 2010a)
and with new information on the LECs involved, both in
the strong (Cirigliano et al., 2006) and in the electromag-
netic sector (Ananthanarayan and Moussallam, 2004).

As usual at NLO in the chiral expansion, both one-
loop diagrams with LO couplings and tree diagrams with
a single insertion of NLO couplings must be taken into
account. Including the leading isospin-breaking correc-
tions (proportional to G8), the amplitudes A∆I have the
following form (Cirigliano et al., 2004a):

A∆I = G27Fπ(M
2
K0 −M2

π0)A
(27)
∆I

+G8Fπ

{
(
M2

K0 −M2
π0

) [
A

(8)
∆I + ε(2)A

(ε)
∆I

]

− e2F 2
π

[
A

(γ)
∆I + ZA

(Z)
∆I + gewkA

(g)
∆I

]}
. (5.4)

The meaning of the amplitudes A
(X)
∆I can be inferred from

the superscriptX . A
(8)
∆I , A

(27)
∆I represent the octet and 27-

plet amplitudes in the isospin limit. A
(ε)
∆I represents the

effect of strong isospin breaking, while the electromag-
netic contribution is split into a part induced by pho-

ton loops A
(γ)
∆I and the parts induced by insertions of

Z and gewk vertices (A
(Z)
∆I and A

(g)
∆I , respectively). The

photon loops are actually infrared divergent: A
(γ)
∆I are

the infrared-finite (structure-dependent) terms whereas
the divergent “infrared components” must be treated in
combination with real photon emission. Details on this
decomposition can be found in Cirigliano et al. (2004a).
Confronting the amplitudes in Eq. (5.4) with experi-

mental rates (Antonelli et al., 2010a), one can extract the
LO couplings G8, G27 and the phase difference χ0 − χ2.
Using instead the dimensionless couplings g8, g27 defined
in Eq. (3.8), an update of the analysis of Cirigliano et al.

(2004a) produces the results in Table IV.

Comments.

i. The reduction of the octet coupling g8 at O(GF p
4)

corresponds to the enhancement of the ∆I = 1/2
amplitude by roughly 30 % at NLO (Kambor et al.,
1991). The (rather generous) theory errors of g8,
g27 at NLO account for the uncertainties of the vari-
ous LECs involved. They should not be interpreted
to include also effects of NNLO or higher. In fact, a
calculation of the leading (double) chiral logarithms
at NNLO (Büchler, 2006) confirmed that ππ rescat-
tering generates an additional enhancement of A0

at higher orders (Pallante and Pich, 2000, 2001).
However, the values of g8, g27 displayed in Table
IV are the appropriate values for nonleptonic weak
amplitudes at LO or NLO, respectively.

ii. At NLO, both g8 and g27 receive small shifts from
isospin-violating corrections. While this could be
expected for g8, it results from a cancellation of dif-
ferent effects in the case of g27. On the other hand,
as indicated in Table IV, the inclusion of isospin
breaking reduces g27 by roughly 10% at LO.
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TABLE IV Weak couplings g8, g27 and phase difference χ0−χ2 at LO and NLO, with (IV) and without (IC) isospin violation.
The theoretical uncertainties are twice the ones assigned by Cirigliano et al. (2004a).

chiral order isospin g8 g27 χ0 − χ2

LO IC 4.96 0.285 47.5◦

LO IV 4.99 0.253 47.8◦

NLO IC 3.62 ± 0.002exp ± 0.28th 0.286 ± 0.0006exp ± 0.028th (47.5± 0.9exp)
◦

NLO IV 3.61 ± 0.002exp ± 0.28th 0.297 ± 0.0006exp ± 0.028th (51.3± 0.8exp)
◦

iii. The phase difference χ0 − χ2 is taken as a fit pa-
rameter because the phases cannot be reliably cal-
culated to NLO in CHPT. At NLO, the fitted phase
difference is rather sensitive to isospin violation.
The more interesting difference of s-wave ππ scat-
tering phase shifts in the isospin limit δ0 − δ2 at√
s =MK will be discussed below.

iv. At NLO, electromagnetic corrections induce a
∆I = 5/2 amplitude:

f5/2 ≡ ReA2/ReA
+
2 − 1

=
(
8.44± 0.02exp ± 2.5th

)
× 10−2. (5.5)

1. ππ phase shifts from K → ππ decays

In the isospin limit, the phase difference χ0−χ2 acces-
sible in K → ππ decays equals the s-wave ππ phase shift
difference δ0(MK)− δ2(MK) (Watson’s theorem). It has
been a long-standing problem to reconcile the phase shift
difference extracted from K → ππ decays with other de-
terminations of pion-pion phase shifts. This problem be-
came especially acute after the precise determination of
ππ phase shifts from combining dispersion theory with
CHPT (Colangelo et al., 2001a). We review here the
present status of this problem (Cirigliano et al., 2009).

• The experimental situation has substantially im-
proved in recent years for both the K+ and KS

lifetimes and for the branching ratios of K → ππ
decays (Antonelli et al., 2010a). Compared to the
analysis of Cirigliano et al. (2004a), the new exper-
imental information reduces the phase shift differ-
ence by more than three degrees (with higher sta-
tistical significance), bringing it closer to the dis-
persion theoretical value (Cirigliano et al., 2008a).

• In the original analysis of Cirigliano et al. (2004a)
the differences γI = χI − δI(MK) were calculated
in CHPT although the χI and δI separately come
out much too small at NLO in the chiral expansion.
The analysis can be improved by relying to a lesser
extent on the NLO calculation of K → ππ ampli-
tudes altogether. Using less information potentially
increases the uncertainty but this is compensated

by a less biased comparison with the data. The re-
sulting estimate of isospin violation is more robust
and it leads to a further decrease of the phase shift
difference by nearly two degrees.

The main idea of the alternative procedure of
Cirigliano et al. (2009) is to use only the isospin-violating
parts of the NLO amplitudes as theory input and to de-
termine δ0(MK) − δ2(MK) directly from the data. In
contrast to the chiral corrections for the full amplitudes,
the isospin-violating (IV) corrections are much smaller
and therefore more suitable for a perturbative estimate.
The amplitudes are now parametrized as

A+− = A0 e
iδ0(MK) +

1√
2
A2 e

iδ2(MK) +∆AIV
+−,

A00 = A0 e
iδ0(MK) −

√
2A2 e

iδ2(MK) +∆AIV
00 ,

A+0 =
3

2
A2 e

iδ2(MK) +∆AIV
+0. (5.6)

All isospin violation is contained in ∆AIV
+−, ∆A

IV
00 , ∆A

IV
+0

that can be extracted from the NLO amplitudes of
Cirigliano et al. (2004a). Since isospin violation was ne-
glected in the 27-plet amplitudes in view of the ∆I = 1/2
rule, ∆AIV

n (n = +−, 00,+0) scale linearly with the
lowest-order octet coupling g8.
The moduli of the amplitudes in the isospin limit are

denoted as A0, A2. These amplitudes together with the
phase shift difference δ0(MK) − δ2(MK) are then deter-
mined directly from the rates. For this purpose, the mod-
uli are written as

|A+−| =

∣∣∣∣A0 +
1√
2
A2 e

i(δ2(MK)−δ0(MK))

+ ∆AIV
+− e

−iδ0(MK)
∣∣∣ ,

|A00| =
∣∣∣A0 −

√
2A2 e

i(δ2(MK)−δ0(MK))

+ ∆AIV
00 e

−iδ0(MK)
∣∣∣ , (5.7)

|A+0| =

∣∣∣∣
3

2
A2 e

i(δ2(MK)−δ0(MK)) +∆AIV
+0 e

−iδ0(MK)

∣∣∣∣ .

In order to determine A0, A2 and δ0(MK)−δ2(MK) from
the three rates, also the I = 0 phase δ0(MK) is needed
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as input (Colangelo et al., 2001a):

δ0(MK) = (39.2± 1.5)◦. (5.8)

From the structure of the moduli in Eq. (5.7) it is obvious
that the precise value of δ0(MK) has little impact on the
phase shift difference.
With the (updated) values of ∆AIV

n (Cirigliano et al.,
2004a) and with g8 = 3.6 (see Table IV), the experimen-
tal rates (Antonelli et al., 2010a) give rise to

A0 = (2.7030± 0.0008)× 10−7 GeV,

A2 = (0.1249± 0.0003)× 10−7 GeV,

δ0(MK)− δ2(MK) = (52.54± 0.83)◦, (5.9)

where the errors are purely experimental. The octet en-
hancement in K → ππ decays is characterized by the
amplitude ratio

A0

A2

= 21.63± 0.04, (5.10)

again with experimental error only.
There are various sources of theoretical uncertainties

associated with the phase shift difference. Whereas the
error of δ0 in Eq. (5.8) is completely negligible a gener-
ous error of 20% for the overall scale g8 of the isospin-
violating amplitudes gives rise to an uncertainty ±1.1◦

for the phase difference. The major part of the error is
due to unknown effects of O(e2p4) that were estimated
by Cirigliano et al. (2009) in two different ways. Alto-
gether, the final value for the phase shift difference in
the isospin limit from K → ππ decays is

[δ0(MK)− δ2(MK)]K→ππ

= (52.5± 0.8exp ± 2.8th)
◦. (5.11)

Before comparing this result with other determinations,
one should recall that the isospin limit is defined in terms
of the neutral meson masses. However, a LO estimate
(Cirigliano et al., 2009) suggests that expanding instead
around the charged pion mass modifies the phase shift
difference only by much less than a degree.
The most recent determinations of the phase shift dif-

ference from ππ scattering data are

[δ0(MK)− δ2(MK)]ππ

=





(47.7± 1.5)◦ (Colangelo et al., 2001a),

(50.9± 1.2)◦ (Kamiński et al., 2008),

(47.7± 0.4)◦ (Batley et al., 2010c),

(47.3± 0.9)◦ (Garćıa-Mart́ın et al., 2011).

(5.12)

These values would agree perfectly well with the phase
difference χ0 − χ2 in Eq. (5.2), obtained in the isospin
limit. However, due to the large ratio A0/A2 in K →
2π decays, isospin-breaking corrections to the dominant

∆I = 1/2 amplitude generate sizable contributions to
A2, modifying also the amplitude phases. The updated
determination of the phase shift difference from K → 2π
decays in Eq. (5.11) (Cirigliano et al., 2009) turns out
to be in reasonable agreement with the ππ results in
Eq. (5.12), although with a larger uncertainty.

2. ǫ′/ǫ

The CP-violating ratio ǫ′/ǫ constitutes a fundamental
test for our understanding of flavor-changing phenomena.
ǫ and ǫ′ parametrize different sources of CP violation in
KL → ππ:

η
+−

≡ A(KL → π+π−)

A(KS → π+π−)
= ǫ+ ǫ′ ,

η00 ≡ A(KL → π0π0)

A(KS → π0π0)
= ǫ− 2 ǫ′ . (5.13)

The dominant effect from CP violation in K0-K0

mixing is contained in ǫ, while ǫ′ accounts for di-
rect CP violation in the decay amplitudes. The
present experimental world average (Abouzaid et al.,
2011a; Alavi-Harati et al., 1999, 2003a; Barr et al., 1993;
Batley et al., 2002; Burkhardt et al., 1988; Fanti et al.,
1999; Gibbons et al., 1993; Lai et al., 2001),

Re (ǫ′/ǫ) =
1

3

(
1−

∣∣∣∣
η
00

η
+−

∣∣∣∣
)

= (16.8± 1.4)× 10−4 ,

(5.14)
demonstrates the existence of direct CP violation in K
decays.
When CP violation is turned on, the amplitudes A0,

A2, A
+
2 acquire imaginary parts. To first order in CP

violation, ǫ′ is given by

ǫ′ = − i√
2
ei(χ2−χ0)

ReA2

ReA0

[
ImA0

ReA0
− ImA2

ReA2

]
. (5.15)

Since ImAI is CP-odd the quantities ReAI and χI are
only needed in the CP limit (I = 0, 2). ǫ′ is suppressed
by the small ratio ReA2/ReA0 ≈ 1/22. The phase φ′ǫ =
χ2−χ0+π/2 = (42.5±0.9)◦ is very close to the so-called
superweak phase (Nakamura et al., 2010)

φǫ ≈ tan−1

(
2(MKL

−MKS
)

ΓKS
− ΓKL

)
= (43.51± 0.05)◦,

(5.16)
implying that cos (φ′ǫ − φǫ) ≈ 1.
To obtain the theoretical SM prediction for ǫ′, the

CP-conserving amplitudes ReAI are set to their experi-
mentally determined values. This procedure avoids the
large uncertainties associated with the hadronic matrix
elements of the four-quark operators in L∆S=1

eff , in par-
ticular ReA0 that involves several octet operators with
a complicated mixing under the renormalization group.
Thus, one only needs a first-principle calculation of the
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CP-odd amplitudes ImA0 and ImA2; the first one is com-
pletely dominated by the strong penguin operator Q6,
while the leading contribution to the second one comes
from the electromagnetic penguin Q8. Fortunately, those
are precisely the operators that are expected to be better
approximated through our large-NC estimate of LECs.

Equation (5.15) involves a delicate balance be-
tween the two isospin contributions. A naive esti-
mate of ImAI at lowest order in the chiral expan-
sion, i.e., using the tree-level formulae in Eq. (5.3),
results in a large numerical cancellation leading to
unrealistically low values of ǫ′/ǫ around 7 × 10−4

(Bosch et al., 2000; Buchalla et al., 1996; Buras et al.,
2001; Buras and Jamin, 2004; Ciuchini et al., 1999, 1993,
1994, 1998). The true SM prediction is then very
sensitive to the precise values of the two contributing
amplitudes (Bertolini et al., 2000; Hambye et al., 2000).
The one-loop CHPT corrections generate an important
enhancement (∼ 35%) of the isoscalar amplitude (ππ
rescattering) and a reduction of A2, destroying the ac-
cidental lowest-order cancellation and bringing the SM
prediction of ǫ′/ǫ in good agreement with the exper-
imental measurement (Pallante and Pich, 2000, 2001;
Pallante et al., 2001).

Owing to the large ratio ReA0/ReA2, isospin violation
plays also an important role in ǫ′/ǫ. Small IV corrections
proportional to the large octet coupling G8 feed into the
small amplitude A2 generating relatively large contribu-
tions, which can modify the predicted value of ǫ′ in a siz-
able way. A systematic analysis of isospin-breaking cor-
rections in ǫ′ was undertaken in Cirigliano et al. (2003c)
where references to earlier work can be found. To first
order in isospin violation, one finds

ǫ′=− i√
2
ei(χ2−χ0)ω+

[
ImA

(0)
0

ReA
(0)
0

(1 + ∆0 + f5/2)−
ImA2

ReA
(0)
2

]
,

(5.17)
where

ω+ = ReA+
2 /ReA0,

∆0 =
ImA0

ImA
(0)
0

ReA
(0)
0

ReA0
− 1 (5.18)

and f5/2 is defined in Eq. (5.5). The superscript (0) on
the amplitudes denotes the isospin limit.

ImA2 is itself first order in isospin breaking. One usu-
ally separates the electromagnetic penguin contribution
to ImA2 from the isospin-breaking effects generated by
other four-quark operators:

ImA2 = ImAemp
2 + ImAnon−emp

2 . (5.19)

A discussion of this scheme-dependent separation in the
framework of CHPT can be found in Cirigliano et al.

(2003c). Splitting off the electromagnetic penguin con-
tribution to ImA2 in this way, one can write ǫ′ in a more

familiar form as

ǫ′ = − i√
2
ei(χ2−χ0)ω+

[
ImA

(0)
0

ReA
(0)
0

(1− Ωeff)−
ImAemp

2

ReA
(0)
2

]
,

(5.20)
where

Ωeff = ΩIV −∆0 − f5/2, (5.21)

ΩIV =
ReA

(0)
0

ReA
(0)
2

× ImAnon−emp
2

ImA
(0)
0

. (5.22)

The quantity Ωeff includes all effects to leading order in
isospin breaking and it generalizes the more traditional
parameter ΩIV. Although ΩIV is in principle enhanced

by the large ratio ReA
(0)
0 /ReA

(0)
2 , the actual numerical

analysis shows all three terms in Eq. (5.21) to be relevant
when both strong and electromagnetic isospin violation
are included (Cirigliano et al., 2003c).
The numerical analysis of Cirigliano et al. (2003c)

found large cancellations among the different contribu-
tions to Ωeff . A well-known example are the contribu-
tions of strong isospin violation via π0–η mixing where
the sum of η and η′ exchange generates an ΩIV of the
order of 25%. However, already at the level of π0–η
mixing alone, a complete NLO calculation (Ecker et al.,
2000b) produces a destructive interference in ΩIV, with
ΩIV = (15.9±4.5)×10−2. Inclusion of electromagnetic ef-
fects slightly increases ΩIV and generates sizable ∆0 and
f5/2, which interfere destructively with ΩIV to produce
the final result (Cirigliano et al., 2003c):

Ωeff = (6.0± 7.7)× 10−2. (5.23)

The small value obtained for Ωeff reinforces the dom-
inance of the gluonic penguin operator Q6 in ǫ′. Taking
this into account and updating all other inputs, the SM
prediction for ǫ′/ǫ turns out to be (Pallante et al., 2001;
Pich, 2004)

Re (ǫ′/ǫ) =
(
19± 2+9

−6 ± 6
)
× 10−4 , (5.24)

in excellent agreement with the experimental measure-
ment shown in Eq. (5.14). The first error was estimated
by varying the renormalization scale µ between Mρ and
mc. The uncertainty induced by ms, which was taken
in the range ms(2GeV) = 110± 20MeV, is indicated by
the second error.
The most critical step is the matching between the

short- and long-distance descriptions, which was done at
leading order in 1/NC . Since all next-to-leading ultravi-
olet (OPE) and infrared (CHPT) logarithms have been
taken into account, our educated guess for the theoreti-
cal uncertainty associated with subleading contributions
is ∼ 30% (third error).
The control of non-logarithmic corrections at NLO

in 1/NC remains a challenge for future investigations.
Several dispersive analyses (Bijnens et al., 2001, 2004;
Cirigliano et al., 2001, 2003a; Cirigliano and Golowich,
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2000, 2002; Donoghue and Golowich, 2000; Knecht et al.,
1999b, 2001; Narison, 2001) and lattice calculations
(Blum et al., 2003; Boucaud et al., 2005; Noaki et al.,
2003) of 〈Q8〉 ≡ 〈2π|Q8|K〉 already exist (most of them
in the chiral limit). Taking the chiral corrections into ac-
count, those results are compatible with the value used in
Eq. (5.24). Unfortunately, the hadronic matrix element
〈Q6〉 ≡ 〈2π|Q6|K〉 is more difficult to compute. Two an-
alytical estimates in the chiral limit, using the so-called
minimal hadronic approximation (Hambye et al., 2003)
and the X-boson approach (Bijnens and Prades, 1999,
2000a), find large 1/NC corrections to 〈Q6〉. It would be
interesting to understand the physics behind those con-
tributions and to study whether corrections of similar
size are present for physical values of the quark masses.
Lattice calculations of 〈Q6〉 are still not very re-

liable and give contradictory results, often with the
wrong sign (Bhattacharya et al., 2005; Blum et al., 2003;
Noaki et al., 2003; Pekurovsky and Kilcup, 2001). The
usual procedure in lattice simulations has been to calcu-
late K → π and K → vacuum matrix elements and use
lowest-order CHPT to recover the physical K → 2π am-
plitudes. In addition to all usual lattice artifacts (finite
volume and lattice spacing, quenched approximation, un-
physical masses, etc.), this misses completely the crucial
role of final-state interactions in the isoscalar octet am-
plitude. Thus, a truly major effort is needed to compute
the K → 2π matrix elements directly. Some progress
in this direction has been achieved, relating the phys-
ical K → 2π amplitudes to the corresponding matrix
elements in a finite Euclidean volume, which are bet-
ter suited for lattice simulations (Lellouch and Lüscher,
2001; Lin et al., 2001). So far, this technique has been
implemented in simulations of the ∆I = 3/2 K+ →
π+π0 amplitude with promising results (Boucaud et al.,
2005; Goode and Lightman, 2010; Kim and Sachrajda,
2010; Liu, 2010). A first estimate of the A0 ampli-
tude at unphysical kinematics has been recently reported
(Blum et al., 2011).
More work is needed to reduce the present uncertainty

quoted in Eq. (5.24). This is a difficult task, but progress
in this direction may be expected in the next few years.

3. CP violation in K0–K0 mixing

Since Re(ǫ′/ǫ) ≪ 1, the ratios η+−
and η00 provide a

direct measurement of |ǫ| (Nakamura et al., 2010):

|ǫ| = 1

3

(
2|η

+−
|+ |η

00
|
)
= (2.228± 0.011)× 10−3,

(5.25)
in perfect agreement with the semileptonic asymmetry

Γ(KL → π−ℓ+ν)− Γ(KL → π+ℓ−ν̄)

Γ(KL → π−ℓ+ν) + Γ(KL → π+ℓ−ν̄)
=

2Re(ǫ)

1 + |ǫ|2
= (3.32± 0.06)× 10−3. (5.26)

The theoretical prediction can be written in the form

(Buchalla et al., 1996; Buras and Guadagnoli, 2008)

|ǫ| = CǫkǫB̂KA
2λ6η̄ ×

{
A2λ4(1 − ρ̄)ηttS0(xt) (5.27)

+ ηctS0(xc, xt)− ηccS0(xc)} ,

where xi = m2
i /M

2
W , S0(xi, xj) and S0(xi) are the

Inami and Lim (1981) box functions,

Cǫ =
G2

FF
2
KMK0M2

W

3
√
2π2(MKL

−MKS
)
= 3.7× 104, (5.28)

ηNLO
tt = 0.5765 ± 0.0065, ηNLO

cc = 1.43 ± 0.23 and
ηNNLO
ct = 0.496 ± 0.047 are short-distance QCD cor-
rections (Brod and Gorbahn, 2010; Buras et al., 1990;
Herrlich and Nierste, 1996) and kǫ = 0.94±0.02 accounts
for small long-distance contributions (Buras et al., 2010).

The renormalization-group-invariant parameter B̂
measures the hadronic matrix element 〈K̄0|Q∆S=2|K0〉
in units of its vacuum saturation approximation. In
the large–NC limit, B̂ = 3/4 (Buras and Gérard, 1986;
Gaiser et al., 1981). The most precise lattice determi-

nations, obtained with 2 + 1 active flavors, quote B̂ =
0.724± 0.030 (Aubin et al., 2010) and B̂ = 0.749± 0.027
(Aoki et al., 2011).
Eq. (5.27) provides a parabolic constraint in the plane

ρ̄–η̄ that is included in the SM unitarity triangle fits
(Bona et al., 2006; Charles et al., 2005). The recent pre-

cise lattice value for B̂ introduces some tension in the fit.
Determining η̄ and ρ̄ from other observables, it implies
|ǫ| = (1.90 ± 0.26) × 10−3 (Brod and Gorbahn, 2010),
slightly smaller than (5.25).

B. K → 3π

There are five CP-conserving decays to three pions (the
K− decays are not listed separately):

AL
000 = A(KL(k) → π0(p1)π

0(p2)π
0(p3)),

AL
+−0 = A(KL(k) → π+(p1)π

−(p2)π
0(p3)),

AS
+−0 = A(KS(k) → π+(p1)π

−(p2)π
0(p3)),

A00+ = A(K+(k) → π0(p1)π
0(p2)π

+(p3)),

A++− = A(K+(k) → π+(p1)π
+(p2)π

−(p3)). (5.29)

For the kinematics one uses the variables

s1 = (k − p1)
2
, s2 = (k − p2)

2
, s3 = (k − p3)

2
(5.30)

with

s0 =
1

3
(s1 + s2 + s3)

=
1

3

(
M2

K +M2
π1 +M2

π2 +M2
π3

)
, (5.31)

where the masses are those of the particles appearing in
the decay under consideration.
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In terms of the Dalitz plot variables

x =
s2 − s1
M2

π+

, y =
s3 − s0
M2

π+

, (5.32)

the amplitudes are often expanded as
(Devlin and Dickey, 1979)

AL
000 = 3(α1 + α3) + 3(ζ1 − 2ζ3)

(
y2 +

1

3
x2
)
,

AL
+−0 = (α1 + α3)− (β1 + β3)y

+(ζ1 − 2ζ3)

(
y2 +

1

3
x2
)

+(ξ1 − 2ξ3)

(
y2 − 1

3
x2
)
,

AS
+−0 =

2

3

√
3 γ3x− 4

3
ξ′3xy, (5.33)

A00+ =

(
−α1 +

1

2
α3

)
+

(
β1 −

1

2
β3 −

√
3γ3

)
y

−(ζ1 + ζ3)

(
y2 +

1

3
x2
)

−(ξ1 + ξ3 + ξ′3)

(
y2 − 1

3
x2
)
,

A++− = (−2α1 + α3) +

(
−β1 +

1

2
β3 −

√
3γ3

)
y

−(2ζ1 + 2ζ3)

(
y2 +

1

3
x2
)

+(ξ1 + ξ3 − ξ′3)

(
y2 − 1

3
x2
)
.

To NLO in the chiral expansion, the K → 3π ampli-
tudes were first calculated by Kambor et al. (1991) in the
isospin limit. Their analysis was repeated and updated
by Bijnens et al. (2003), confirming the main observa-
tion of Kambor et al. (1992, 1991) that inclusion of NLO
corrections significantly improves the LO current alge-
bra amplitudes. One main reason for the much better
agreement with experimental data is that the quadratic
slope parameters ζ1,. . . ,ξ

′
3 vanish at LO. On the other

hand, NLO CHPT only provides the leading contribu-
tions for these quadratic slope parameters, which more-
over depend on a number of LECs. Some assumptions
about the combinations of NLO LECs occurring in the
amplitudes must be made for a comparison with experi-
ment.
Experiments on K → 3π decays provide information

on the rates and on the Dalitz plot distributions. The
latter are conventionally expanded up to second order in
x, y (assuming again CP conservation):

∣∣∣∣
A(s1, s2, s3)

A(s0, s0, s0)

∣∣∣∣
2

= 1 + gy + hy2 + kx2, (5.34)

except for KS → π+π−π0 [see Eq. (5.33)]. The experi-
mental data available at the end of 2004 were confronted

with NLO CHPT by Bijnens and Borg (2004, 2005a,b),
including also isospin-violating and radiative corrections.
Assuming that the additional electromagnetic LECs at
NLO in the Lagrangian (2.18) all vanish at a certain scale,
their conclusion was that isospin breaking in K → 3π
is in general small. That analysis seems worth repeat-
ing, not only because of better knowledge of LECs re-
viewed in Sec. III, but also because of the more pre-
cise experimental information on the Dalitz plot slopes in
Eq. (5.34), in particular for the K± modes from NA48/2
[see Batley et al. (2010a) and references therein].

1. CP violation in K → 3π decays

The decay KS → 3π0 violates CP. In analogy to K0 →
2π in Eq. (5.13), one defines the amplitude ratio

η000 =
AS

000

AL
000

∣∣∣∣
x=y=0

= ǫ+ ǫ′000. (5.35)

The parameter ǫ′000 is a measure of direct CP viola-
tion. To lowest order in CHPT, there is a simple rela-
tion between ǫ′000 and ǫ′ (D’Ambrosio and Isidori, 1998;
Li and Wolfenstein, 1980), which implies

|ǫ′000| ≪ |ǫ|. (5.36)

Therefore, it will be very difficult to detect direct CP
violation in this decay. In fact, KS → 3π0 has not been
observed at all so far. The accurate theoretical prediction

BR(KS → 3π0) = 1.9× 10−9 (5.37)

should be compared with the best upper bound
(Ambrosino et al., 2005)

BR(KS → 3π0) < 1.2× 10−7 (90% C.L.), (5.38)

corresponding to

|η000| < 0.018. (5.39)

In the search for direct CP violation in K decays, the
three-pion decays of charged kaons have played a promi-
nent role. In addition to rate asymmetries, both theory
and experiment have payed special attention to asym-
metries in the linear Dalitz plot parameter g defined in
Eq. (5.34).
After a number of conflicting estimates [reviewed by

D’Ambrosio and Isidori (1998)], the theoretical state-of-
the-art Dalitz plot asymmetries come from a NLO CHPT
calculation of Gámiz et al. (2003) [see also Prades (2008);
Prades et al. (2007)]. In fact, this calculation also in-
volves an estimate of the dominant contributions to the
absorptive parts of the relevant amplitudes of O(G8p

6).
The linear Dalitz plot slopes g±C,N refer to the decays of

K± into three charged pions (C), and one charged and
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TABLE V Dalitz slope asymmetries for K± → 3π decays:
comparison between theory (Gámiz et al., 2003) and experi-
ment (Batley et al., 2007).

AC
g AN

g Ref.

(−2.4± 1.2) × 10−5 (1.1± 0.7) × 10−5 Gámiz et al. (2003)

(−1.5± 2.2) × 10−4 (1.8± 1.8) × 10−4 Batley et al. (2007)

two neutral pions (N), respectively. The CP-violating
quantities of interest are the slope asymmetries

AC,N
g =

g+C,N − g−C,N

g+C,N + g−C,N

. (5.40)

These asymmetries depend at LO on the imaginary parts
of the LECs G8 and gewk [Eqs. (2.16) and (2.18)] only.
Gámiz et al. (2003) found that AC

g is relatively insensi-

tive to NLO LECs whereas AN
g is less stable. The theo-

retical results are compared with the most precise exper-
imental data in Table V.
To a good approximation, ǫ′/ǫ also depends on the

imaginary parts of the LO LECs G8 and gewk only (see
Sec. V.A.2). Therefore, one can establish bounds for
AC

g within the SM, using the experimental value for ǫ′/ǫ
(Prades, 2008).

2. ππ scattering lengths from K → 3π decays near threshold

Because of the π+–π0 mass difference there is a cusp
in the Mπ0π0 distribution at Mπ0π0 = 2Mπ+ in K →
3π decays with two π0 in the final state. It was first
seen in K± → π±π0π0 (Batley et al., 2006, 2009a), more
recently also in KL → 3π0 (Abouzaid et al., 2008a). It
is due to the charge exchange scattering of pions in the
final state (Budini and Fonda, 1961; Cabibbo, 2004)

K± → π±(π+π−)∗ → π±π0π0. (5.41)

The interference between tree and one-loop amplitudes in
Fig. 7 generates the cusp via the square-root singularity
at M2

π0π0 = 4M2
π+ . From Eq. (5.41) the effect is seen to

be mainly sensitive to the combination of ππ scattering
lengths

a0 − a2 ∼ A(π+π− → π0π0)thresh. (5.42)

Various approaches have been pursued to extract the ππ
scattering lengths from K → 3π near threshold.

i. Following the original approach of Cabibbo (2004),
based on unitarity and analyticity, a systematic ex-
pansion of the singular terms of the Mπ0π0 distri-
bution in powers of the scattering lengths was per-
formed by Cabibbo and Isidori (2005).

π

π
0

π
0

π

π
+

π
−

π
0

π
0

K K+

FIG. 7 Interference between tree and one-loop amplitudes
generates a cusp at M2

π0π0 = 4M2
π+ in K → 3π decays.
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FIG. 8 NA48/2 Ke4 and cusp results from two-parameter fits
in the (a0, a2) plane. The smallest contour corresponds to
the combination of NA48/2 results. The cross-hatched ellipse
is the CHPT prediction (4.92) of Colangelo et al. (2001a,b).
The dash-dotted lines correspond to the recent result from
DIRAC (Adeva et al., 2011). We thank Brigitte Bloch-
Devaux for updating the original figure from Batley et al.

(2010c).

ii. In a related method, unitarity and analyticity were
combined with CHPT (Gámiz et al., 2007).

iii. A two-loop dispersive representation of K → 3π
amplitudes in the presence of isospin breaking is
under construction (Kampf et al., 2009).

iv. In the most advanced approach, based on a nonrel-
ativistic effective field theory (NRQFT), the K →
3π amplitudes are expanded in powers of the scat-
tering lengths and of the pion momenta in the K
rest frame (Bissegger et al., 2008; Colangelo et al.,
2006; Gasser et al., 2011).

In the NRQFT approach of the Bern-Bonn group, the
power counting involves a small parameter ε that charac-
terizes the size of pion three-momenta: |~p |/Mπ = O(ε).
In contrast to standard CHPT, the scattering lengths are
not predicted but extracted from the data. The decay
amplitudes are then given by a two-fold expansion in ε
and in the scattering lengths (denoted below generically
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as a). At any given order in a and ε, only a finite number
of graphs contribute because each loop is suppressed by
one order in ε.
NRQFT is manifestly Lorentz invariant and therefore

frame independent. Analyticity and unitarity are guar-
anteed as in standard CHPT. However, unlike in stan-
dard CHPT, the amplitudes are valid to all orders in
the quark masses. They have been calculated up to
O(ε4, a ε5, a2ε2) (Bissegger et al., 2008; Colangelo et al.,
2006).
A major advantage of the NRQFT approach is that

photons can be incorporated in a straightforward man-
ner, allowing for the systematic inclusion of electromag-
netic corrections (Bissegger et al., 2009). In the Coulomb
gauge, only transverse photons appear as internal lines
in diagrams whereas the Coulomb photons give rise to a
non-local vertex via the equations of motion. Of course,
also real photon emission must be included, in particular
to cancel infrared divergences. However, the nonrelativis-
tic power counting then shows that finite bremsstrahlung
effects are small near threshold.
The production of pionium, bound states of charged

pions, upsets the nonrelativistic counting. A certain re-
gion around the cusp is therefore excluded from the data
analysis such that one-photon exchange of O(a e2) is suf-
ficient.
The decay spectra were calculated to O(e2ε4) for all

K → 3π channels and, in addition, to O(e2a ε2) for the
channels of main interest, K+ → π+π0π0 and KL → 3π0

(Bissegger et al., 2009). The radiatively corrected am-
plitudes were used in the analysis of NA48/2 data by
Batley et al. (2009a) to extract the scattering lengths.
Fig. 8 shows a comparison of the cusp analysis of
Batley et al. (2009a) and the Ke4 studies of Batley et al.

(2010c). The smallest contour corresponds to the com-
bination of the two methods. The result of the DIRAC
experiment (Adeva et al., 2011) and the CHPT predic-
tion of Colangelo et al. (2001a,b) are shown as well. The
corresponding numerical results are displayed in Table
VI. The agreement between theory and experiment is
impressive.

VI. RARE AND RADIATIVE DECAYS

Kaon decays mediated by FCNC fall in the set of rare
and radiative decays. These modes are suppressed in
the SM and their main interest, other than their own
understanding, relies on the possible observation of New
Physics effects. Most of these processes are dominated by
long-distance contributions, such as K → γγ, K → γγ∗,
K → πγ∗ and others. However, there are also pro-
cesses governed by short-distance amplitudes, such as
K → πνν̄.
Long-distance dominated decays have been studied in

the chiral framework. The leading contributions, mostly
O(p4), have been evaluated within CHPT. In many of

d s

u, c, t

W

Z0

d ν

u, c, t

s

W

W

e

νν

ν

FIG. 9 Z-penguin and box contributions to K → πνν.

the processes estimates of the dominant NLO corrections
have also been carried out.

A. K → πνν, ππνν

The rare decays KL → π0νν̄ and K± → π±νν̄ can be
predicted with a precision surpassing any other FCNC
process involving quarks, thus making them a clean
place to look for non-standard signals. The analysis of
these processes makes use of the full arsenal of effective
field theory, from short-distance effective Hamiltonians
to CHPT. We outline below the main steps of the anal-
ysis and then quote the final results for the branching
ratios, with a brief discussion of the uncertainties.
Let us begin with a qualitative discussion that high-

lights the main features of these modes. In the SM,
the K → πνν decays proceed through FCNC amplitudes
generated at the quark level by Z-penguin and box dia-
grams (see Fig. 9). Separating the contributions accord-
ing to the intermediate up-type quark running inside the
loops, the quark-level amplitude has the structure

A(s → dνν̄) ∼
∑

q=u,c,t

λqXSM(xq)

∼ m2
t

M2
W

λt +
m2

c

M2
W

ln
MW

mc
λc +

Λ2
QCD

M2
W

λu, (6.1)

where λq = VqdV
∗
qs and xq = m2

q/M
2
W . The equa-

tion above reflects the quadratic (“hard”) nature of the
GIM mechanism. This in turn implies that the top-
quark contribution, which carries a large CP-violating
phase, accounts for ∼ 68% of A(s → dνν̄) while the
charm- and up-quark contributions amount to ∼ 29%
and ∼ 3%, respectively. So we see that the power-like
GIM mechanism implies a large suppression of the u-
quark (long-distance) contribution and complete domi-
nance of the CP-violating contribution by the t-quark
term. These properties are often summarized by stating
that the K → πνν decays are “short-distance” domi-
nated. The short-distance domination also implies that
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TABLE VI Experimental and theoretical results for s-wave ππ scattering lengths. First line: cusp analysis of NA48/2
(Batley et al., 2009a) using the Bern-Bonn framework (Bissegger et al., 2008; Colangelo et al., 2006). The external error is
due to the uncertainty in the ratio of the amplitudes for K+ → π+π+π− and K+ → π+π0π0. Second line: Ke4 analysis of
NA48/2 (Batley et al., 2010c). Third line: analysis of Colangelo et al. (2001a) on the basis of Roy equations and CHPT.

a0 − a2 a0 a2

Batley et al. (2009a) 0.2571(48)stat(25)syst(14)ext −0.0241(129)stat(94)syst(18)ext

Batley et al. (2010c) 0.2220(128)stat(50)syst(37)th −0.0432(86)stat(34)syst(28)th

Colangelo et al. (2001a) 0.264 ± 0.004 0.220 ± 0.005 −0.0444 ± 0.0010

to a good approximation the interaction is described at
low energy by one single local operator, Q13 in Eq. (2.9),
whose hadronic matrix element can be related to the form
factors appearing in Kℓ3 decays. All these features make
it possible to predict K → πνν rates very accurately.

The above qualitative discussion can be put on
solid footing by systematically employing effective-theory
techniques. As usual in the application to weak de-
cays, three steps are required. (i) Determine the ef-
fective Lagrangian Leff at the weak scale µ ∼ MW by
integrating out the heavy gauge bosons and the top
quark. In this case, the diagrams of Fig. 9 generate
the operator Q13. The Wilson coefficient C13 is de-
termined entirely in terms of λt and xt, and it now
includes NLO QCD effects (Buchalla and Buras, 1999;
Misiak and Urban, 1999) and two-loop electroweak cor-
rections (Brod et al., 2011; Buchalla and Buras, 1998).
(ii) Evolve Leff down to a low hadronic scale using
renormalization group techniques. In this step charm-
loop contributions (the c quark is still an active de-
gree of freedom) generate corrections to C13 propor-
tional to λcxc lnxc. These are known up to and in-
cluding NNLO QCD effects (Buchalla and Buras, 1994;
Buras et al., 2005, 2006) and NLO electroweak correc-
tions (Brod and Gorbahn, 2008). At the charm thresh-
old µ ∼ mc one integrates out the charm quark. At
the current level of precision, one needs to keep not only
the leading dimension-six operator, but also dimension-
eight operators (Falk et al., 2001), whose relative impor-
tance is suppressed by M2

K/m
2
c ∼ 15%. (iii) Calcu-

late hadronic matrix elements of the operators appear-
ing in Leff at a low scale µ ∼ 1 GeV. Leff contains
the purely semileptonic operator Q13, the dimension-
eight operators generated at the charm threshold, and
the |∆S| = 1 four-quark operators, which generate long-
distance contributions to K → πνν̄ (they correspond
to the u-quark contributions to Z-penguin and box di-
agrams). The matrix element of Q13 can be related to
Kℓ3 form factors (Marciano and Parsa, 1996). This anal-
ysis was recently updated by Mescia and Smith (2007)
to include first-order isospin-breaking effects to NLO in
CHPT as well as long-distance radiative corrections for
the K± decay. Concerning the long-distance contribu-
tions and dimension-eight operators, the relevant matrix

elements were calculated in CHPT (Isidori et al., 2005;
Lu and Wise, 1994).
Owing to the CP properties of the K0

2 state, the op-
erator Q13 can only contribute to KL → π0νν̄ through
a violation of the CP symmetry. The transition ampli-
tude is completely dominated by direct CP violation, the
contribution from K0–K0 mixing being only of the or-
der of 1%. There exist tiny CP-conserving contributions
through higher-order short-distance operators and long-
distance corrections, but their effect on the branching
ratio is negligible (Buchalla and Isidori, 1998).
Putting all the ingredients together, the predicted SM

rates for K → πνν̄ decays can be written as

BR(KL → π0νν̄) = κL

(
Imλt
λ5

X

)2

(1− δǫ) , (6.2)

BR(K+ → π+νν̄) = κ+ (1 + ∆EM)

[(
Imλt
λ5

X

)2

+

(
Reλt
λ5

X +
Reλc
λ

(Pc + δPc,u)

)2
]
, (6.3)

where δǫ =
√
2|ǫ| [1+Pc/(A

2λ)− ρ]/η contains the small

K0–K0 mixing contribution (Buchalla and Buras, 1996),
with λ = Vus, A, ρ and η the Wolfenstein CKM parame-
ters. The overall factors κL,+ encode the hadronic matrix
element related to Kℓ3 data (Mescia and Smith, 2007):

κL = (2.231± 0.013)× 10−10 (λ/0.225)8,

κ+ = (5.173± 0.025)× 10−11 (λ/0.225)8. (6.4)

They are now dominated by experimental uncertainties
in Kℓ3. Defining the infrared-safe photon-inclusive rate
by the cut Ecms

γ < 20 MeV, the electromagnetic correc-
tion takes the value ∆EM = −0.003 (Mescia and Smith,
2007). The top-quark contribution is given by X =
1.469±0.017 (Brod et al., 2011; Buras et al., 2005, 2006),
with an uncertainty due to the parametric error in mt,
matching scale µt, and higher-order electroweak effects.
The dimension-six charm contribution has the value Pc =
0.38± 0.04, with error dominated by the parametric un-
certainty in mc. Finally, the long-distance (u quark) and
dimension-eight charm contributions can be lumped in
δPc,u = 0.04 ± 0.02 (Isidori et al., 2005). Taking the
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CKM matrix elements from global fits, one arrives at
(Brod et al., 2011; Buras et al., 2005, 2006):

BR(KL → π0νν̄) = (2.4± 0.4)× 10−11, (6.5)

BR(K+ → π+νν̄) = (0.78± 0.08)× 10−10. (6.6)

In both cases the uncertainty is largely parametrical
(∼ 80% for the KL mode and ∼ 70% for the K+ mode),
due to CKM input, mc, mt and αs(MZ). As the deter-
mination of CKM parameters improves in the next few
years, we can expect to reach accuracies better than 10%.
In summary, from a theoretical perspective K → πνν̄
decays offer the cleanest window on non-standard con-
tributions to the s → d transitions (complementary to
B meson studies). Moreover, within the general context
of flavor physics, K → πνν̄ decays are perhaps the most
promising place to look for non-standard signals, due to
their SM-specific suppression induced by CKM factors
[A(s → dνν̄) ∝ V 5

us]. Even if one considers SM exten-
sions with the same CKM suppression factor, K → πνν̄
decays still provide an excellent probe, because the SM
contributions can be predicted very accurately.
On the experimental side, the charged kaon mode

was observed (Artamonov et al., 2008), while only an
upper bound on the neutral mode has been achieved
(Ahn et al., 2008, 2010):

BR(K+ → π+νν̄) = (1.73+1.15
−1.05)× 10−10, (6.7)

BR(KL → π0νν̄) < 2.6× 10−8 (90%C.L.). (6.8)

New experiments are under development at CERN
(Spadaro, 2011) and J-PARC (Watanabe, 2010) for
charged and neutral modes, respectively. These exper-
iments aim to reach O(100) events (assuming SM rates),
thus beginning to seriously probe the new-physics po-
tential of these rare K decays. Increased sensitivities
could be obtained through the recent P996 proposal for
a K+ → π+νν̄ experiment at Fermilab and the higher
kaon fluxes available at Project-X (Tschirhart, 2011).
Finally, let us mention that the decays KL,S → ππνν̄

and K± → π±π0νν̄ share the same feature of short-
distance domination as the corresponding single-pion
modes, and could therefore provide another probe of
the underlying s → dνν̄ transition within and be-
yond the SM. The calculation of the decay ampli-
tudes requires taking the matrix element of the cur-
rent s̄γµ(1− γ5)d between the kaon and two-pion states,
which can be extracted from the measured Kℓ4 de-
cays using isospin symmetry (Chiang and Gilman, 2000;
Littenberg and Valencia, 1996), or directly calculated
in CHPT (Geng et al., 1994). Theoretical predictions
can be summarized as follows (Littenberg and Valencia,
1996):

BR(KL → π+π−νν̄) ≃ (6.9)

1.8×
[
(1.37− ρ)2 + 0.17 η2

]
× 10−13,

BR(KL → π0π0νν̄) ≃ (1.37− ρ)2 × 10−13,

BR(K± → π±π0νν̄) ≃ 7×
[
(1.37− ρ)2 + η2

]
× 10−15.

Experimental searches are still far above the expected SM
rates and have reached the following 90% C.L. limits:

BR(K+ → π+π0νν̄) < 4.3× 10−5 (Adler et al., 2001),

BR(KL → π0π0νν̄) < 8.1× 10−7 (Ogata et al., 2011).

(6.10)

B. K → γ∗γ∗

The amplitude for a transition of the type

K(p) −→ γ∗(q1) γ
∗(q2) (6.11)

is determined by a tensor amplitudeMµν(q1, q2) that has
the most general form compatible with gauge invariance:

Mµν =

[
gµν − qµ1 q

ν
1

q21
− qµ2 q

ν
2

q22
+
q1 · q2
q21q

2
2

qµ1 q
ν
2

]
M2

Ka(q
2
1 , q

2
2)

+

[
qµ2 q

ν
1 − q1 · q2

(
qµ1 q

ν
1

q21
+
qµ2 q

ν
2

q22
− q1 · q2

q21q
2
2

qµ1 q
ν
2

)]

× b(q21 , q
2
2)

+ i εµνρσq1ρq2σ c(q
2
1 , q

2
2). (6.12)

Thus, for instance, the amplitude into two real photons is
given by A = Mµν(q1, q2) εµ(q1)εν(q2). Bose symmetry
implies that the invariant amplitudes a(q21 , q

2
2), b(q

2
1 , q

2
2)

and c(q21 , q
2
2) are symmetric functions of their arguments.

If CP is conserved the amplitudes a and b contribute
to K0

1(KS) → γ∗γ∗ while the amplitude c determines
K0

2(KL) → γ∗γ∗. When one of the photons is on-shell
(q21 = 0 for instance), Mµν is described by two invariant
amplitudes,

Mµν = (qµ2 q
ν
1 − q1 · q2gµν) b(0, q22)

+ i εµνρσq1ρq2σ c(0, q
2
2), (6.13)

which also remains valid for both photons on-shell.
These processes are dominated by long-distance dy-

namics, in particular those with both photons on-shell
or when off-shell photons produce lepton pairs. Short-
distance amplitudes give only tiny contributions.
Since the photon does not couple directly to neutral

particles, the only possible local contributions should
come from field strength tensors, which are absent at
O(p2). Moreover, the O(p4) Lagrangians L∆S=1

G8p4 and

L∆S=1
G27p4 in Eq. (2.16) only contain two operators with Fµν

terms, but they are coupled to at least two charged par-
ticles. Therefore, the leading K → γ∗γ∗ contribution is
generated by a non-local O(p4) loop amplitude that is
necessarily finite. In the following and unless explicitly
stated we assume CP invariance.

1. KS → γγ

The photons produced in this decay have parallel
polarizations (FµνF

µν) and, up to one loop, there is
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KS

π+, K+

γ

γ

FIG. 10 Lowest-order [O(p4)] contributions to KS → γγ.

no short-distance contribution due to Furry’s theorem
(Gaillard and Lee, 1974b). This decay arises, at leading
order, from a finite two-pion one-loop amplitude with one
vertex from L∆S=1

G8p2 or L∆S=1
G27p2 (D’Ambrosio and Espriu,

1986; Goity, 1987), as shown in Fig. 10. Its contribution
is

b(4)(0, 0) =
2

π
αF0

(
G8 +

2

3
G27

)(
1− r2π

)
F

(
1

r2π

)
,

(6.14)
where rP =MP/MK and F (x) is given in Eq. (A1). The
charged-kaon loop contribution vanishes because of the
factor (1− r2K) = 0.
The decay width is given by

Γ (KS → γγ) =
M3

K

64 π

∣∣b(0, 0)
∣∣2. (6.15)

Taking the LO values of the couplings G8 and G27,
Eq. (6.14) results in BR(KS → γγ) = 2.0× 10−6, which
compares rather well with the present experimental world
average (Nakamura et al., 2010)

BR(KS → γγ) = (2.63± 0.17)× 10−6. (6.16)

Although the full O(p6) amplitude has not been cal-
culated, the dominant effects were implemented through
(i) the inclusion of unitarity corrections from KS→ππ→
π+π−→γγ (Kambor and Holstein, 1994), and (ii) a local
contribution introducing an unknown coupling constant
(Buchalla et al., 2003),

b(4+6)(0, 0) =
2αF0

M2
K

B(M2
K) +

4αG8

π F0
M2

K

(
1− r2π

)
a1,

(6.17)
where B(s) can be found in Kambor and Holstein (1994).
Including the 27-plet contribution in B(s), the exper-
imental rate (6.16) implies a1 = (−1.2 ± 1.3) × 10−3,
showing that unitarity corrections are enough to repro-
duce the measured branching fraction.

2. KL → γγ

This decay produces photons with perpendicular
polarizations (εµνρσF

µνF ρσ) and then it is the am-

KL

γ

γ

π0, η, η0

FIG. 11 Dominant contribution to KL → γγ.

plitude c(0, 0) in Eq. (6.13) that contributes. Owing
to its GIM suppression, the short-distance amplitude
only gives a few-percent contribution to the full width
(Gaillard and Lee, 1974b; Herrlich and Kalinowski,
1992; Ma and Pramudita, 1981; Pramudita, 1988). Ac-
cordingly this decay is also dominated by long-distance
dynamics.
The dominant contribution, shown in Fig. 11, is given

by the weak transition of the kaon into a non-flavored
pseudoscalar meson and its corresponding decay into
two photons (Ma and Pramudita, 1981), the latter be-
ing determined by the anomalous Lagrangian LWZW in
Eq. (2.15). At lowest order in the chiral SU(3) expansion
[O(p4)], only π0 and η8 propagate. However, the ampli-
tude vanishes exactly due to the Gell-Mann-Okubo mass
relation (Gell-Mann, 1961; Okubo, 1962). Therefore, the
decay starts at O(p6) where the singlet η1 state is also
included:

c(6)(0, 0) = − 2

π
αF0 (G8 −G27)F2(ρ̂, ξ, θ), (6.18)

where

F2 =
1

1− r2π
+

1

3
(
1− r2η

)
[
(1 + ξ) cos θ + 2

√
2ρ̂ sin θ

]

×
[
Fπ

Fη8

cos θ − 2
√
2
Fπ

Fη0

sin θ

]

− 1

3(1− r2η′)

[
2
√
2ρ̂ cos θ − (1 + ξ) sin θ

]

×
[
Fπ

Fη8

sin θ + 2
√
2
Fπ

Fη0

cos θ

]
. (6.19)

Here θ is the mixing angle between η8 and η1 states:

(
η

η′

)
=

(
cos θ − sin θ

sin θ cos θ

)(
η8

η1

)
. (6.20)

Although there is still some discussion on the value of
θ, we take θ = −20◦ arising in the large-NC analy-
ses (Herrera-Siklódy et al., 1998; Kaiser and Leutwyler,
1998). ξ parametrizes the amount of SU(3) breaking
(Donoghue et al., 1986):

ξ =
√
3
〈η8|L|∆S|=1|K0

2〉
〈π0|L|∆S|=1|K0

2 〉
− 1, (6.21)



32

while ρ̂ carries the information of the breaking of nonet
symmetry through the weak interactions of the singlet at
O(p2) (Donoghue et al., 1984):

ρ̂ = −
√

3

8

〈η1|L|∆S|=1|K0
2 〉

〈π0|L|∆S|=1|K0
2 〉
. (6.22)

If SU(3) and nonet symmetries are exact we have ξ = 0
and ρ̂ = 1. Finally, Fπ , Fη8 and Fη1 are the decay
constants of the pion, η8 and η1, respectively. The
values of the symmetry-breaking parameters are still
not precisely known. We take Fη8/Fπ = 1.34 and
Fη1/Fπ = 1.0 from Kaiser and Leutwyler (1998) [see also
Feldmann and Kroll (2002)]. The SU(3) breaking pa-
rameter was estimated to be ξ ≃ 0.17 (Donoghue et al.,
1986), but this value was challenged with the claim
that it cancels with an additional s → dgg contribution
(He et al., 2003). Hence we will consider, conservatively,
ξ ∼ 0.0− 0.2. Finally, dominance of the pion pole seems
to require a small breaking of nonet symmetry, ρ̂ ≃ 0.8
(Cheng, 1990; D’Ambrosio and Portolés, 1998a).
The decay width is given by Eq. (6.15) with the func-

tion c(0, 0) instead of b(0, 0). If we consider the experi-
mental determination (Nakamura et al., 2010)

BR(KL → γγ) = (5.47± 0.04)× 10−4, (6.23)

a value of θ = −20◦ accommodates ξ = 0 with a value of
ρ̂ ≃ 0.7 while ξ = 0.2 requires ρ̂ ≃ 0.8.

3. KS → γℓ+ℓ−

The amplitude for processes with one off-shell photon
decaying into a lepton pair is given by

A =
e

q22
Mµν(q1, q2) ε

∗
µ(q1) ū(k)γνv(k

′), (6.24)

with q2 = k + k′. At O(p4) the amplitude b(0, q22) in
Eq. (6.13) is uniquely determined by a one-loop calcu-
lation of the K0

1 → γγ∗ transition (Ecker et al., 1988;
Sehgal, 1973). The dominant octet contribution is

b(4)(0, q22) =
4

π
G8 αF0

(
1− r2π

)
H(z), (6.25)

where z = q22/M
2
K and H(z) is given in Eq. (A3). The

result for the spectrum in q22 is usually normalized to the
two-photon width as

1

Γγγ

dΓ

dz
=

2

z
(1− z)3

∣∣∣∣∣
H(z)

H(0)

∣∣∣∣∣

2
1

π
ImΠ(z), (6.26)

with ImΠ(z) the electromagnetic spectral function asso-
ciated to the lepton pair:

1

π
ImΠ(z) =

α

3π

(
1 + 2

r2ℓ
z

)√
1− 4

r2ℓ
z
θ
(
z − 4r2ℓ

)
,

(6.27)

where rℓ = mℓ/MK . Γγγ ≡ Γ(KS → γγ) is given by

b(4)(0, 0) in Eq. (6.14) [notice that H(0) = − 1
2 F (1/r

2
π)].

Integrating the spectrum, one predicts the ratios

Γ(KS → γℓ+ℓ−)

Γ(KS → γγ)
=

{
1.2× 10−2 (ℓ = e),

2.8× 10−4 (ℓ = µ).

(6.28)
These processes have not been measured yet.

4. KL → γℓ+ℓ−

As in the KS decay, the normalized spectrum is given
by Eq. (6.26) with the ratio H(z)/H(0) substituted by

f(z) ≡ c(0, q22)

c(0, 0)
= 1 + b z +O(z2). (6.29)

Being of higher order in CHPT, our knowledge of the
form factor f(z) is unfortunately rather limited. The
decay mechanism in Fig. 11 generates an unambiguous
contribution from the electromagnetic form factor of the
π0 (η, η′), which amounts to a slope bV = M2

K/M
2
ρ ≃

0.41. However, there are other possible contributions
that have been analyzed only within explicit models
(Bergström et al., 1983, 1990; D’Ambrosio and Portolés,
1997; Ecker, 1990; Ecker et al., 1990; Sehgal, 1973), giv-
ing slopes in the range b ≃ 0.8− 1.0.
The experimental data can be fitted with a simple

parametrization such as (D’Ambrosio et al., 1998b)

f(z)
∣∣
DIP

= 1 + αDIP

z

z −M2
ρ/M

2
K

, (6.30)

which provides the slope bDIP = −αDIPM
2
K/M

2
ρ .

A recent determination by the KTeV collaboration
(Abouzaid et al., 2007b) for the electron case finds
αDIP = −1.73 ± 0.05 (bDIP = 0.71 ± 0.02), while αDIP =
−1.54±0.10 (bDIP = 0.63±0.04) was previously extracted
from the muon mode (Alavi-Harati et al., 2001c).

5. KL → ℓ+1 ℓ
−
1 ℓ

+
2 ℓ

−
2

The dominant long-distance amplitude for this process
is driven by the creation of two lepton pairs:

A =
4πα

q21q
2
2

Mµν(q1, q2) ū(k1)γµv(k
′
1) ū(k2)γνv(k

′
2),

(6.31)
with qi = ki + k′i. If CP is conserved only the ampli-
tude c(q1, q2) in Eq. (6.12) contributes. The invariant
spectrum in the variables zi = q2i /M

2
K , normalized to

Γγγ ≡ Γ(KL → γγ), is given by

1

Γγγ

d2Γ

dz1dz2
=

2

z1z2

( α
3π

)2
|f(z1, z2)|2λ3/2(1, z1, z2)

×
∏

i=1,2

(
1 + 2

r2ℓi
zi

)√

1− 4
r2ℓi
zi
, (6.32)
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where f(z1, z2) = c(q21 , q
2
2)/c(0, 0). A parametriza-

tion suitable to analyze the data is provided by
(D’Ambrosio et al., 1998b)

f(z1, z2)
∣∣
DIP

= 1 + αDIP

∑

i=1,2

zi
zi −M2

ρ/M
2
K

+ βDIP

∏

i=1,2

zi
zi −M2

ρ/M
2
K

. (6.33)

The channels ℓ1 = ℓ2 = e and ℓ1 = e, ℓ2 = µ have
already been observed experimentally. The first one is
only sensitive to the parameter αDIP due to the low invari-
ant mass of the e+e− pairs (Alavi-Harati et al., 2001d).
Although the second channel should be more suitable
to extract the parameter βDIP, in practice that is still
not feasible due to poor statistics (Alavi-Harati et al.,
2003b). Consequently, βDIP = 0 is assumed and αDIP is
extracted. The most precise determination is obtained
for the channel with muons giving αDIP = −1.59± 0.37,
in good agreement with the results from KL → γµ+µ−.
The world average is dominated by the KL → γe+e−

mode and is given by αDIP = −1.69± 0.08. A complete
lowest-order calculation of QED radiative corrections was
also performed (Barker et al., 2003). Its impact on the
slope αDIP could amount to a 15% correction, well within
the present error.
The high-q2 behaviour of the function f(z1, z2) in the

model of D’Ambrosio et al. (1998b) enforces a constraint
on its parameters that is violated only in a very mild way,
namely the sum rule 1 + 2αDIP + βDIP = 0. Hence, from
the world average value of αDIP, we can estimate the phe-
nomenologically elusive second parameter: βDIP ≃ 2.4.

C. K → ℓ+ℓ−

The most general amplitude for this process is given
by

A(K → ℓ+ℓ−) = u(k) (iB + Cγ5) v(k
′). (6.34)

If CP is conserved the amplitude B (p-wave 3P0) deter-
mines K0

1 → ℓ+ℓ− while K0
2 → ℓ+ℓ− proceeds via the

s-wave 1S0 amplitude C. The associated width is

Γ(K → ℓ+ℓ−) =
MK

8π
βℓ
(
β2
ℓ |B|2 + |C|2

)
, (6.35)

with βℓ =
√
1− 4m2

ℓ/M
2
K .

1. KS → ℓ+ℓ−

The main contribution comes from the amplitude
Bγγ that gives the transition KS → γ∗γ∗ → ℓ+ℓ−

(Ecker and Pich, 1991). This two-loop amplitude is fi-
nite because chiral symmetry forbids any CP-invariant

K
0

ℓ

ℓ

FIG. 12 Two-photon contribution to K0 → ℓ+ℓ−.

local contribution at this order. The result can be writ-
ten as

Rℓ
S =

Γ(KS → ℓ+ℓ−)

Γ(KS → γγ)
(6.36)

=
α2β2

ℓm
2
ℓ

2π2|H(0)|2M2
K

∣∣Iℓ,disp + iIℓ,abs
∣∣2 ,

where H(0) follows from Eq. (A3) and Iℓ,disp (Iℓ,abs) in-
dicate the dispersive (absorptive) parts of the two-loop
diagrams. The ℓ = e case is dominated by the absorp-
tive contribution: Ie,disp ≃ 1.4, Ie,abs ≃ −35. This gives

Re
S = 7.8× 10−9 corresponding to

BR(KS → e+e−) = 2.1× 10−14, (6.37)

to be compared with the recent bound by
Ambrosino et al. (2009b):

BR(KS → e+e−) < 9× 10−9 (90% C.L.). (6.38)

For ℓ = µ there is a slight dominance of the dispersive
contribution, Iµ,disp ≃ −2.8, Iµ,abs ≃ 1.2, which implies

Rµ
S = 1.9× 10−6 and

BR(KS → µ+µ−) = 5.1× 10−12, (6.39)

to be compared with the (almost 30-year-old) bound
(Gjesdal et al., 1973)

BR(KS → µ+µ−) < 3.2× 10−7 (90% C.L.). (6.40)

There exists a small short-distance contribution to
this decay through the CP-violating component of the
s-wave amplitude C in Eq. (6.35), which in the SM was
estimated for the muon case as (Buchalla et al., 1996;
Isidori and Unterdorfer, 2004)

Csd = −GF α(MZ)

π sin2 θW

√
2mµ FK Im (V ∗

tsVtd)Y (xt),

(6.41)
where Y (xt) is given in Buchalla et al. (1996). Using the
Wolfenstein parametrization, the short-distance contri-
bution to the branching ratio is given by

BR(KS → µ+µ−)sd = 1.4× 10−12

∣∣∣∣
Vcb
0.041

∣∣∣∣
4 ∣∣∣∣

λ

0.225

∣∣∣∣
2

η2

≃ 1.7× 10−13, (6.42)

an order of magnitude short of the CP-invariant contri-
bution.
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2. KL → ℓ+ℓ−

If CP invariance is preserved this decay is given by the
amplitude C in Eq. (6.34). It is convenient to normalize
the rate to the KL → γγ mode:

Rℓ
L =

Γ(KL → ℓ+ℓ−)

Γ(KL → γγ)
(6.43)

= 2βℓ

(α
π
rℓ

)2 (
|Fℓ,disp|2 + |Fℓ,abs|2

)
.

The absorptive amplitude gets contributions from several
available on-shell states (Martin et al., 1970), but the γγ
intermediate state dominates completely (Fig. 12):

Fℓ,abs =
π

2 βℓ
ln

(
1− βℓ
1 + βℓ

)
. (6.44)

The dispersive part arises from the one-loop diagram
KL → γ∗γ∗ → µ+µ− and local CHPT terms to ab-
sorb the loop divergence (Gómez Dumm and Pich, 1998;
Isidori and Unterdorfer, 2004; Knecht et al., 1999a):

Fℓ,disp =
1

4βℓ
ln2
(
1− βℓ
1 + βℓ

)
+

1

βℓ
Li2

(
βℓ − 1

βℓ + 1

)
+

π2

12βℓ

+ 3 ln
mℓ

µ
+ χ(µ), (6.45)

where the local contribution can be split into its long-
distance and short-distance components:

χ(µ) = χγγ(µ) + χsd. (6.46)

χγγ(µ) compensates the scale dependence of the one-loop
amplitude, while χsd accounts for the short-distance con-
tribution s̄ d→ µ+µ−.
The KL → µ+µ− decay is well established experimen-

tally. The measured rate (Nakamura et al., 2010)

Rµ
L = (1.25± 0.02)× 10−5 (6.47)

appears to be nearly saturated by the absorptive contri-
bution (6.44), Rµ

L|abs = 1.195× 10−5. The difference be-
tween these two numbers provides an experimental mea-
surement of the modulus of the dispersive amplitude and,
therefore, up to a two-fold ambiguity, of the local term:

χ(Mρ) =

{
3.75± 0.20

1.52± 0.20
. (6.48)

The KL → e+e− rate is then predicted to be Re
L =

(1.552 ± 0.014) × 10−8 or (1.406 ± 0.013) × 10−8, re-
spectively. Both values are in agreement with the
present experimental result Re

L|exp = (1.65±0.91)×10−8

(Ambrose et al., 1998), obtained with only four events.
Incidentally, this is at present the tiniest branching ra-
tio ever measured: BR(KL → e+e−) = 9+6

−4 × 10−12.
The corresponding branching ratio for the muon case is
BR(KL → µ+µ−) = (6.84±0.11)×10−9 (Ambrose et al.,
2000).

At O(p6) in the chiral expansion, the KL → γγ ampli-
tude is given by the π0, η, η′ exchange mechanism shown
in Fig. 11. The details of the weak transition vertex can-
cel out in the ratio Rℓ

L. Therefore, removing the short-
distance contribution χsd, Eqs. (6.43) to (6.45) can be
directly applied to the electromagnetic 2γ decays of the
neutral unflavored pseudoscalar mesons. Moreover, the
local CHPT contributions are also the same. Thus, from
the measured π0 → e+e− and η → µ+µ− rates one can
determine χγγ(µ) (Gómez Dumm and Pich, 1998), again
up to a two-fold ambiguity. One gets χγγ(Mρ) = 0.8±1.0
or −20.7±1.0 from π0 → e+e−, and χγγ(Mρ) = 5.5±0.9
or −0.8 ± 0.9 from η → µ+µ−. The second π0 → e+e−

solution is clearly excluded. The first one agrees very well
with the negative η → µ+µ− solution, but it is only 3.2σ
away from the positive one. Keeping the two alternative
possibilities and following the PDG average prescription,
we get

χγγ(Mρ) =

{
−0.1± 0.7

3.4± 2.3
, (6.49)

to be compared with the theoretical estimate
χγγ(Mρ) = −0.3± 0.9 (Knecht et al., 1999a), evaluated
within lowest-meson dominance in the large-NC frame-
work. An alternative theoretical estimate was obtained
(D’Ambrosio et al., 1998b; Isidori and Unterdorfer,
2004) performing the 2γ loop integration with the form
factor (6.33), with αDIP = −(1 + βDIP)/2 = −1.69± 0.08
as determined from the radiative decays. One gets in
this way χγγ(Mρ) = 3.3 ± 1.3, also compatible with
(6.49).
The short-distance contribution to KL → µ+µ− is

well known at NLO (Buchalla et al., 1996) and a NNLO
evaluation of the charm-quark contribution YNL was car-
ried out more recently (Gorbahn and Haisch, 2006). The
relative sign with respect to the long-distance ampli-
tude can be fixed unambiguously in the large-NC limit
(Gómez Dumm and Pich, 1998; Isidori and Unterdorfer,
2004):

χSM
sd = 4.965× 103 [Re(λt)Y (xt) + Re(λc)YNL]

= −1.82± 0.04. (6.50)

Adding the long-distance component (6.49), one gets
χ(Mρ) = −1.9 ± 0.7 or 1.6 ± 2.3, to be compared with
Eq. (6.48). Although the present uncertainties are still
too large to make a meaningful test of χsd, a better un-
derstanding of the long-distance amplitude could well un-
cover new-physics contributions.
The longitudinal polarization PL of either muon in

the decay KL → µ+µ− is a measure of CP violation
(Pais and Treiman, 1968b; Sehgal, 1969). Within the
SM, the main source for PL is indirect CP violation due
to K0 −K0 mixing. The longitudinal polarization arises
from the interference of both amplitudes in Eq. (6.34):

PL =
NR −NL

NR +NL
= −

MKβ
2
µ

4πΓ
Im(BC∗), (6.51)
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where NR, NL are the numbers of outgoing µ− with pos-
itive or negative helicity, respectively and Γ is the full
decay width.
Within the SM, one expects (Ecker and Pich, 1991)

|PL| = (2.6± 0.4)× 10−3. (6.52)

This polarization has not been measured yet.

D. K → πγγ(∗)

The general amplitude for K(k) → π(p)γ(q1)γ(q2),

A(K → πγγ) = ε∗µ(q1) ε
∗
ν(q2)M

µν(k, q1, q2), (6.53)

contains four Lorentz structures:

Mµν =
A(z, y)

M2
K

(qµ2 q
ν
1 − q1 · q2 gµν)

+
2B(z, y)

M4
K

(−k · q1 k · q2 gµν − q1 · q2 kµkν

+ k · q1 qµ2 kν + k · q2 kµqν1 )

+
C(z, y)

M2
K

εµνρσq1ρq2σ (6.54)

+
D(z, y)

M4
K

[
εµνρσ (k · q2 q1ρ + k · q1 q2ρ) kσ

+
(
kµεναβγ + kνεµαβγ

)
kαq1βq2γ

]
,

where z = (q1 + q2)
2/M2

K and y = k · (q1 − q2)/M
2
K .

Bose symmetry requires the invariant amplitudes A(z, y),
B(z, y) and C(z, y) to be even in y, while D(z, y) is odd.
In the limit where CP is conserved, A and B contribute
only to KL → π0γγ, while C and D contribute to KS →
π0γγ. All of them are involved in K+ → π+γγ.
The double differential rate for unpolarized photons is

d2Γ

dy dz
=

MK

29π3

{
z2
(
|A+B|2 + |C|2

)
(6.55)

+

[
y2 − 1

4
λ(1, r2π , z)

]2 (
|B|2 + |D|2

)}
.

The physical region is given by 0 ≤ |y| ≤ λ1/2(1, r2π, z)/2
and 0 ≤ z ≤ (1− rπ)

2.
The processes K → πγγ have no tree-level contribu-

tions of O(p2). At O(p4) the amplitudes B and D are
still zero, since there are not enough powers of momenta
to generate the gauge structure. Therefore, B and D
arise only at O(p6). Notice that both B and D lead to
contributions also for small z.
The amplitudes forK → πγγ∗ have a related but much

more involved structure than with both photons on-shell.
We comment briefly on these processes.

1. K+ → π+γγ

The leading contribution of O(p4) to the dominant
octet amplitude for K+ → π+γγ was determined in

K+

π+

γ

γ

π+

FIG. 13 Unitarity contribution from K+ → π+π+π− to
K+ → π+γγ.

Ecker et al. (1988):

A(4)(z) =
G8M

2
Kα

2πz

[
(z + 1− r2π)F

(
z/r2π

)

+(z − 1 + r2π)F (z)− ĉz
]
, (6.56)

where F (z) is defined in Eq. (A1) and

ĉ = 128π2 [3(L9 + L10) +N14 −N15 − 2N18] /3 (6.57)

in terms of the LECs in Eqs. (2.15), (2.16). Note that the
loop contribution is finite and, consequently, the coun-
terterm combination is scale independent. The subdom-
inant 27-plet contribution to the amplitude A(4)(z) was
also determined (Gérard et al., 2005). In addition, start-
ing at O(p4) but going beyond it,

C(z) =
G8M

2
Kα

π

[
z − r2π

z − r2π + irπ
Γπ0

MK

− 3z − 2− r2π
3(z − r2η)

]
,

(6.58)

where rη = Mη/MK and Γπ0 ≡ Γ(π0 → γγ). No-
tice that the imaginary part of the η pole has not been
included. This amplitude is generated by the Wess-
Zumino-Witten functional in Eq. (2.15) through the se-
quence K+ → π+(π0, η) → π+γγ. The η′ contribution,
though fairly suppressed by its mass, was also considered
within U(3) CHPT (Gérard et al., 2005).
Although there is no complete evaluation to O(p6),

the most important contributions have been estimated.
The unitarity corrections from K+ → π+π+π−, shown
in Fig. 13, were determined by D’Ambrosio and Portolés
(1996). They contribute to both amplitudes A(z, y)
and B(z), where A becomes y-dependent. Local non-
resonant contributions were also studied and a naive chi-
ral dimensional estimate indicates that they are small.
Vector-resonance contributions to the O(p6) LECs are
introduced through their effect on the amplitude B
(Cohen et al., 1993):

a+V = − π

2G8M2
Kα

lim
z→0

BV (z). (6.59)

The vector-exchange contribution to A can also be writ-
ten in terms of the parameter a+V , if we assume that these
local amplitudes are generated through strong resonance
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FIG. 15 Spectrum for K+ → π+γγ in the diphoton invariant
mass by NA48/2. From Morales (2008).

exchange supplemented with a weak transition in the ex-
ternal legs (Ecker et al., 1990):

AV = G8M
2
Kαa

+
V (3 + r2π − z)/π. (6.60)

These vector-exchange contributions were estimated by
D’Ambrosio and Portolés (1997) and found to be very
small: a+V = −0.2± 0.3.
The branching ratio of this decay and its spectrum

were measured by Kitching et al. (1997):

BR(K+ → π+γγ) = (1.1± 0.3)× 10−6. (6.61)

Hence it is possible to determine the value of ĉ in
Eq. (6.56). From the analysis of the normalized spectrum
at O(p4) the value ĉ = 1.6 ± 0.6 (χ2/dof = 0.9) is ob-
tained. Including the unitarity corrections and neglecting
localO(p6) contributions, the fit improves (χ2/dof = 0.7)
yielding ĉ = 1.8± 0.6. The diphoton invariant-mass dis-
tribution is shown in Fig. 14 for different values of ĉ. The
spectrum observed by NA48/2 is shown in Fig. 15.
The electromagnetic penguin operators induce a CP-

violating charge asymmetry in K± → π±γγ. This asym-
metry is estimated to be tiny within the SM (Ecker et al.,
1988; Gao, 2003).

2. KS → π0γγ

The leading contribution to this decay is given by
K0 → π0(π0, η) → π0γγ, where the first part is dom-
inated by the octet weak transition in the Lagrangian
(2.16) and the second part arises from the Wess-Zumino-
Witten anomalous term in Eq. (2.15). The ampli-
tude starts at O(p4) but includes also higher orders
(Ecker et al., 1987b):

C(z) =
G8M

2
Kα

π

[
2− z − r2π

z − r2π + irπ
Γπ0

MK

− Fπ(2− 3z + r2π)

3Fη

(
z − r2η

)
]
,

(6.62)

keeping Fπ 6= Fη to account for chiral corrections. An
amplitude D(z, y) would arise at higher chiral orders. As
in the K± decay, the η′ contribution was also included
by Gérard et al. (2005). It is seen, however, that the
amplitude is dominated by the pion pole.
In order to eliminate the overwhelming background

from KS → π0π0, one restricts the kinematical region
to z > 0.2. The chiral prediction gives

BR(KS → π0γγ)z>0.2 = 3.8× 10−8 (6.63)

that compares well with the experimental measurement
(Lai et al., 2004)

BR(KS → π0γγ)z>0.2 = (4.9± 1.8)× 10−8. (6.64)

3. KL → π0γγ

The relevance of this channel extends beyond its
own interest as it provides a CP-conserving contri-
bution via the two-photon cut to the decay KL →
π0ℓ+ℓ− (Donoghue et al., 1987; Ecker et al., 1988;
Heiliger and Sehgal, 1993a; Sehgal, 1988) that competes
with direct and indirect CP-violating contributions.
The absence of O(p4) counterterms for this process in-

dicates that the only contribution is a finite one-loop
result at this order (Cappiello and D’Ambrosio, 1988;
Ecker et al., 1987b; Sehgal, 1990). The octet part of the
amplitude A(z) is

A(4)(z) =
G8M

2
Kα

π z

[(
z − r2π

)
F
(
z/r2π

)

−
(
z − 1− r2π

)
F (z)

]
, (6.65)

where F (z) is given in Eq. (A1). This result gives rise to
BR(KL → π0γγ) = 6.8×10−7, significantly smaller than
the present PDG average (Nakamura et al., 2010)

BR(KL → π0γγ) = (1.27± 0.03)× 10−6. (6.66)

This indicates that higher-order chiral corrections should
be considered.
The unitarity corrections from KL → π+π−π0 con-

tributing at O(p6) (Cappiello et al., 1993; Cohen et al.,
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1993) give rise to both A and B amplitudes. The in-
clusion of the 27-plet contribution was carried out by
Cappiello et al. (1993). As in the K± case, those ampli-
tudes also get local contributions from both vector ex-
change and non-resonant parts. From dimensional anal-
ysis the latter seem to be negligible, but the situation of
vector resonance contributions is still not settled. This
is parametrized by a0V , defined as in Eq. (6.59), that was
estimated theoretically to take the value a0V = −0.7±0.3
(D’Ambrosio and Portolés, 1997). The measured spec-
trum clearly favors a non-zero value for this parameter:
NA48 (Lai et al., 2002) gets a0V = −0.46 ± 0.05 while
KTeV (Abouzaid et al., 2008b) obtains a0V = −0.31 ±
0.09. The predicted spectrum is compared with the mea-
sured distribution in Fig. 16.
On the basis of the experimental situation at the time,

Gabbiani and Valencia (2002) argued that the complete
set of three O(p6) counterterms is needed to describe
both branching ratio and spectrum. However, the latest
experimental analyses (Abouzaid et al., 2008b; Lai et al.,
2002) find a satisfactory representation in terms of a0V
only, supporting the dominance of vector exchange.

4. K → πγℓ+ℓ−

These decays are obviously mediated by K → πγγ∗

and are closely related to the case with both photons on-
shell. The study of K+ → π+γℓ+ℓ− and KL → π0γℓ+ℓ−

was carried out by Donoghue and Gabbiani (1997, 1998)
and Gabbiani (1999).
The decay amplitude has a more complex Lorentz

structure than in Eq. (6.54). Nevertheless, atO(p4) these
decays have the same properties as K+ → π+γγ and
KL → π0γγ, i.e., both have finite one-loop contributions,
the charged channel has the same scale-independent
counterterm ĉ and the neutral one has no local contri-
butions. Taking ĉ = 1.8, one obtains at this order:

BR(K+ → π+γe+e−) = 1.4× 10−8,

BR(KL → π0γe+e−) = 1.0× 10−8. (6.67)

These predictions have to be compared with the recent
experimental measurements (Batley et al., 2008a)

BR(K+ → π+γe+e−) = (1.29± 0.13)× 10−8 (6.68)

and (Abouzaid et al., 2007a)

BR(KL → π0γe+e−) = (1.62± 0.17)× 10−8. (6.69)

As can be seen, the agreement is rather good in the
charged-kaon channel.
Unitarity corrections from K → πππ, extending be-

yond O(p4), were performed for both decays. We com-
ment on them in turn.

• K+ → π+γe+e−: Local O(p6) counterterms were
found to be negligible in K+ → π+γγ. However,
neglecting them also in this case and using ĉ = 1.8,
one finds BR(K+ → π+γe+e−) = 1.7×10−8, which
disagrees with the experimental result. Indeed, the
analysis of the spectrum (formeeγ > 260MeV) car-
ried out in Batley et al. (2008a) gets ĉ = 0.90±0.45.
Hence local contributions of O(p6) and beyond
might be non-negligible after all.

• KL → π0γe+e−: Together with unitarity correc-
tions, Donoghue and Gabbiani (1997) included ex-
plicit contributions from vector resonances. Their
prediction BR(KL → π0γe+e−) = 2.3× 10−8 is in
slight disagreement with the experimental measure-
ment quoted above. Abouzaid et al. (2007a) con-
cluded that employing a value of a0V = −0.46 (in
accordance with KL → π0γγ), the branching ratio
goes down to BR(KL → π0γe+e−) = 1.51× 10−8,
in better agreement with the measured width.

E. K → πℓ+ℓ−

The FCNC transitionsK → πℓ+ℓ− (ℓ = e, µ) are dom-
inated by single virtual-photon exchange (K → πγ∗) if
allowed by CP invariance as in KS and K± decays. This
contribution is CP violating for KL → π0ℓ+ℓ− and con-
sequently this process has become a point of reference for
studying the CP-violating sector of the SM.

1. KS, K
± → πℓ+ℓ−

The amplitude for K(k) → π(p)ℓ+(p+)ℓ
−(p−) is de-

termined by an electromagnetic transition form factor
in the presence of the nonleptonic weak interactions
(D’Ambrosio et al., 1998a; Ecker et al., 1987a):

A = −GF α

4π
V (z) (k + p)µ uℓ(p−)γµvℓ(p+), (6.70)

where z = q2/M2
K and q = k − p. The spectrum in the

dilepton invariant mass is given by

dΓ

dz
=
G2

Fα
2M5

K

12π(4π)4
λ̄3/2

√
1− 4

r2ℓ
z

(
1 + 2

r2ℓ
z

)
|V (z)|2,

(6.71)
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FIG. 17 Unitarity K → πππ contribution to K+,KS → πγ∗.

where λ̄ ≡ λ(1, z, r2π) and 4r2ℓ ≤ z ≤ (1− rπ)
2.

Because of gauge invariance V (z) = 0 at O(p2). The
first evaluation at O(p4) of the dominant octet amplitude
was carried out by Ecker et al. (1987a):

V+(z) = −G8

GF

[
Φ(z) + Φ(z/r2π) + w+

]
(6.72)

for K± → π±γ∗, and

VS(z) =
G8

GF
[ 2 Φ(z) + wS ] (6.73)

for KS → π0γ∗. Here

Φ(z) =
5

18
− 4

3z
+

4

3z

(
1− z

4

)
G(z), (6.74)

where G(z) is given in Eq. (A2). In terms of the LECs in
Eqs. (2.15) and (2.16), the local O(p4) contributions are

w+ =
64π2

3
(N r

14 −N r
15 + 3Lr

9) +
1

3
ln

µ2

MKMπ
,

wS =
32π2

3
(2N r

14 +N r
15) +

1

3
ln

µ2

M2
K

. (6.75)

Although a complete study to O(p6) has not been per-
formed yet, the unitarity corrections from K → πππ,
shown in Fig. 17, were determined by D’Ambrosio et al.

(1998a). The full result can be decomposed in a polyno-
mial contribution (linear in z up to this order) plus the
unitarity loop corrections,

Vi(z) = ai + biz + V ππ
i (z) (i = +, S), (6.76)

the latter being given by

V ππ
i (z) =

αi + βi(z − z0)/r
2
π

GFM2
Kr

2
π

[
1 +

z

r2V

] [
Φ(z/r2π) +

1

6

]
,

(6.77)
with z0 = r2π + 1/3, rV =Mρ/MK and

α+ = β1 −
1

2
β3 +

√
3 γ3, β+ = 2 (ξ1 + ξ3 − ξ′3),

αS = − 4√
3
γ3, βS =

8

3
ξ′3, (6.78)

in terms of the parameters in Eq. (5.33). The
parametrization (6.76) includes the O(p4) contributions.
The polynomial part incorporates the local counterterms

in Eq. (6.75) through a
(4)
+ = G8/GF (1/3 − w+) and

a
(4)
S = −G8/GF (1/3 − wS), and tiny contributions to

the slopes b
(4)
i from the O(p4) kaon loop.

Vi(z) in Eq. (6.76) is expected to be an excellent ap-
proximation to the complete form factor of O(p6). It
only assumes that all contributions except the two-pion
intermediate state can be well approximated by a linear
polynomial for small values of z. The predicted rates can
then be expressed in terms of ai and bi in Eq. (6.76):

BRe
K± =

[
0.15− 3.31 a+ − 0.90 b+ + 60.51 a2+

+ 16.36 a+b+ + 1.77 b2+
]
× 10−8 ,

BRµ
K± =

[
1.19− 19.97 a+ − 6.56 b+ + 120.16 a2+

+ 69.42 a+b+ + 10.59 b2+
]
× 10−9 ,

BRe
KS

=
[
0.01− 0.55 aS − 0.17 bS + 43.76 a2S

+ 11.83 aSbS + 1.28 b2S
]
× 10−10 ,

BRµ
KS

=
[
0.07− 3.96 aS − 1.34 bS + 86.90 a2S

+ 50.21 aSbS + 7.66 b2S
]
× 10−11. (6.79)

If ai, bi ∼ 1 as expected, the polynomial contribution
dominates over the unitarity-cut loop corrections coming
from K → πππ. In particular, due to the strong sup-
pression of KS → π+π−π0, the latter are tiny for the KS

decay. Thus, these decays are very sensitive to the chiral
LECs.
The values of a+ and b+ have been fitted from the

K+ → π+ℓ+ℓ− spectra. One finds a+ = −0.578± 0.016
and b+ = −0.779± 0.066 for ℓ = e (Batley et al., 2009b),
while the muonic mode gives a+ = −0.575 ± 0.039 and
b+ = −0.813±0.145 (Batley et al., 2011a). The resulting
experimental branching ratios are

BR(K± → π±e+e−) = (3.14± 0.10)× 10−7,

BR(K± → π±µ+µ−) = (9.62± 0.25)× 10−8. (6.80)

In Figs. 18 and 19 we show the spectra of K+ → π+ℓ+ℓ−

(ℓ = e, µ) and the comparison with the theoretical pre-
dictions for the chiral form factors (6.76) and for a linear
form factor [without V ππ

+ (z) in Eq. (6.76)].
For the KS decay only branching ratios are available.

By using the ratio bi/ai = 1/r2V given by vector meson
dominance (D’Ambrosio et al., 1998a), it is found that
|aS | = 1.06+0.26

−0.21 for the electron (Batley et al., 2003) and

|aS | = 1.54+0.40
−0.32 for the muon case (Batley et al., 2004b).

Notice though that the vector meson dominance ratio
bi/ai quoted above fails in the charged kaon decay. The
measured rates are

BR(KS → π0e+e−) = (5.8+2.9
−2.4)× 10−9,

BR(KS → π0µ+µ−) = (2.9+1.5
−1.2)× 10−9, (6.81)

where the large errors reflect the low statistics.
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FIG. 18 Spectra for K+ → π+e+e− in the dilepton invariant
mass. The data are from Batley et al. (2009b).
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Other parametrizations going beyond O(p4) have
also been put forward, focusing on the polynomial
part of V (z). Friot et al. (2004b) assume a minimal
narrow-resonance structure, while a related vector meson
dominance approach is introduced in Dubničková et al.

(2008). Unfortunately, the size of present data samples
is insufficient to distinguish between models.
In addition to the dominant K → πγ∗ amplitude,

the form factor V (z) receives a short-distance contri-
bution from the operator Q7V in Eq. (2.9). Although
negligible in the branching ratios and spectra, its in-
terference with the long-distance amplitude leads to
a CP-violating charge asymmetry in K± → π±ℓ+ℓ−

(Ecker et al., 1988). This asymmetry is tiny within
the SM (D’Ambrosio et al., 1998a; D’Ambrosio and Gao,
2002).

2. KL → π0ℓ+ℓ−

KL → π0 (ℓ+ℓ−)J=1 with the lepton pair in a vector or
axial-vector state is CP violating and, accordingly, also

KL

π
0

ℓ

ℓ

FIG. 20 CP-conserving contribution to KL → π0ℓ+ℓ−.

KL → π0γ∗. There are three main contributions to the
KL → π0ℓ+ℓ− decay that, in principle, could be of the
same order of magnitude (Donoghue and Gabbiani, 1995;
Ecker et al., 1988):

i. A direct CP-violating transition induced by the
short-distance Lagrangian (2.5). The relevant con-
tributions come from the operators Q7V and Q7A

in Eq. (2.9) and are proportional to Imλt.

ii. An indirect CP-violating amplitude due to the
K0 − K0 oscillation, proportional to the CP-
violating parameter ǫ:

A(KL → π0ℓ+ℓ−)|CPV-ind = ǫA(KS → π0ℓ+ℓ−). (6.82)

iii. A CP-conserving contribution from KL → π0γγ
through γγ → ℓ+ℓ− rescattering, as indicated in
Fig. 20.

Let us first consider the CP-violating contribu-
tions (Buchalla et al., 2003; D’Ambrosio et al., 1998a;
Flynn and Randall, 1989b; Heiliger and Sehgal, 1993a;
Isidori et al., 2004). Together with a vector contribution
V (z), as in Eq. (6.70), from indirect CP violation and the
Q7V amplitude, the Q7A operator generates axial-vector
and pseudoscalar terms:

V ind(z) ≃ ± ǫ [ aS + bSz ] ,

V dir(z) = i
4π y7V√

2α
Imλt f

Kπ
+ (z),

A(z) = i
4π y7A√

2α
Imλt f

Kπ
+ (z),

P (z) = −i 8π y7A√
2α

Imλt f
Kπ
− (z), (6.83)

where fKπ
± (z) are the Kℓ3 form factors. In V ind(z)

we have neglected the tiny unitarity corrections from
KS → π+π−π0 and have made explicit a possible am-
biguity in the relative sign with respect to the short-
distance contributions.
The pseudoscalar amplitude is helicity suppressed and

can be neglected in the electron case. Using bS/aS =
1/r2V , the total CP-violating contribution to the rate is
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(Buchalla et al., 2003; Buras et al., 1994a)

BR(KL → π0e+e−)CPV = (6.84)

10−12 ×
[
15.7 |aS|2 ± 6.2 |aS|

(
Imλt
10−4

)
+ 2.4

(
Imλt
10−4

)2
]
.

For the muon case (including the dependence on mµ),
one obtains (Isidori et al., 2004)

BR(KL → π0µ+µ−)CPV = (6.85)

10−12 ×
[
3.7 |aS|2 ± 1.6 |aS|

(
Imλt
10−4

)
+ 1.0

(
Imλt
10−4

)2
]
.

In both cases the error in the numerical coefficients is
estimated to be 10% − 20%. For an expected value of
aS ∼ 1, the largest contribution comes from the indirect
CP-violating component, particularly in the case ℓ = e.
Based on several assumptions on the matching between
short- and long-distance dynamics, Buchalla et al. (2003)
concluded that a positive interference between the in-
direct and direct CP-violating components is the most
natural setting. Using the values of |aS | extracted from
the analyses of KS → π0ℓ+ℓ− and considering a positive
interference, one finds

BR(KL → π0e+e−)CPV = (3.1± 0.9)× 10−11 ,

BR(KL → π0µ+µ−)CPV = (1.4± 0.5)× 10−11. (6.86)

Now we consider the CP-conserving contribution from
KL → π0γγ. Neglecting the y dependence of the 2γ am-
plitudes A, B in Eq. (6.54), the combination A+B gives
|γγ〉J=0 and the amplitude B provides |γγ〉J=2. However,
the transition to |ℓ+ℓ−〉 is helicity suppressed (∝ mℓ) for
the initial J = 0 state (Donoghue et al., 1987). Accord-
ingly, for ℓ = e only the amplitude B [arising beyond
O(p4) in the chiral counting] could give a non-negligible
contribution, while for ℓ = µ both amplitudes can be
significant (Ecker et al., 1988; Flynn and Randall, 1989a;
Isidori et al., 2004; Morozumi and Iwasaki, 1989).
Through a naive dimensional analysis of the ampli-

tude B(z), Ecker et al. (1988) concluded that the CP-
conserving contribution to KL → π0e+e− was much
smaller than the CP-violating one, making this decay a
good testing ground of the SM. This was later confirmed
by a two-loop calculation, including unitarity corrections
from KL → π+π−π0 and ignoring O(p6) local contri-
butions (Isidori et al., 2004), which found values below
10−12 for the CP-conservingKL → π0e+e− rate. A local
contribution to B(z), parametrized through the coupling
a0V [see Eq. (6.59)] determined from KL → π0γγ data,
results in smaller values around 10−13. The contribution
from B(z) turns out to be very small because of phase
space and angular momentum suppression. Therefore,
the KL → π0e+e− decay is dominantly CP violating.
The CP-conserving contribution to the muon channel,

BR(KL → π0µ+µ−)CPC = (5.2± 1.6)× 10−12, (6.87)

is of the same order but slightly smaller than the CP-
violating component (6.86). The interference between
CP-conserving and CP-violating amplitudes can then
generate a sizable transverse polarization of the muons
that could be within reach of the next generation of ex-
periments (Ecker et al., 1988).
The experimental upper bounds on these decays are

getting close to the SM predictions. At 90% C.L., we
have (Alavi-Harati et al., 2004)

BR(KL → π0e+e−) < 2.8× 10−10 (6.88)

and (Alavi-Harati et al., 2000b)

BR(KL → π0µ+µ−) < 3.8× 10−10. (6.89)

F. K → ππγ(∗)

The amplitude for K(pK) → π1(p1)π2(p2)γ(q)

A(K → ππγ) = ε∗µ(q)M
µ(q, p1, p2) (6.90)

is decomposed into dimensionless electric (E) and mag-
netic (M) components defined by

Mµ =
E(zi)

MK
[ z1 p2µ − z2 p1µ ] +

M(zi)

M3
K

εµνρσp
ν
1p

ρ
2q

σ,

(6.91)
with zi = q ·pi/M2

K (i = 1, 2) and z3 = z1+z2 = E∗
γ/MK ,

where E∗
γ is the photon energy in the kaon rest frame.

Summing over photon helicities, there is no interference
between both amplitudes and the double differential rate
for an unpolarized photon is given by

d2Γ

dz1 dz2
=

MK

(4π)3
(
|E(zi)|2 + |M(zi)|2

)
(6.92)

×
[
z1z2

(
1− 2(z1 + z2)− r21 − r22

)
− r21z

2
2 − r22z

2
1

]
,

with ri = Mπi
/MK . The electric amplitude can be de-

composed as the sum of inner-bremsstrahlung (IB) and
direct-emission (DE) components, E = EIB +EDE, while
the magnetic amplitude contains DE only. EIB is deter-
mined by the Low theorem (Low, 1958):

EIB(zi) =
e

MK z1z2
A(K → π1π2). (6.93)

In general, EIB dominates the photon spectrum for low
values of the photon energy (in the kaon rest frame), but
it is obviously absent for KS,KL → π0π0γ.
The DE amplitudes explore the electromagnetic struc-

ture of the hadron interaction. They are customarily de-
composed in a multipole expansion (D’Ambrosio et al.,
1992):

EDE = E1(z3) + E2(z3) · z12 +O
(
z212
)
,

M = M1(z3) +M2(z3) · z12 +O
(
z212
)
, (6.94)

with z12 = z1 − z2. This decomposition is particularly
relevant for initial states with definite CP (neutral chan-
nels), as even electric and odd magnetic multipoles are
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CP odd while the others are CP even. Hence CP in-
variance would require the amplitudes E1,M2, E3, . . . to
vanish for KL → π+π−γ, whereas M1, E2,M3, . . . vanish
for KS → π+π−γ. For K± → π±π0γ all of them are al-
lowed. Moreover, the limited phase space (|z12| ∼< 0.17)
indicates that higher-order multipoles are suppressed.
The decays K → π(p1)π(p2)ℓ

+(k+)ℓ
−(k−) where the

lepton pair is produced by an off-shell photon have am-
plitudes

A(K → ππℓ+ℓ−) =
e

q2
Vµ uℓ(k−)γ

µvℓ(k+), (6.95)

where q = k+ + k− and

Vµ =
E1(zi)
MK

p1µ +
E2(zi)
MK

p2µ +
M(zi)

M3
K

εµνρσp
ν
1p

ρ
2q

σ.

(6.96)

1. K+ → π+π0γ

The IB contribution to this decay is suppressed by the
∆I = 1/2 rule because it is proportional to the K+ →
π+π0 amplitude, a ∆I = 3/2 transition. However, this
is still the largest contribution to the rate. The domi-
nant DE contribution is O(p4) in CHPT (Bijnens et al.,
1992; Ecker et al., 1992). At this order, the electric am-
plitude has a finite one-loop contribution of which the
octet part turns out to be tiny (D’Ambrosio and Isidori,
1995; Ecker et al., 1994):

E
(4)
loop = −ieG8MK

8π2F0
(M2

K −M2
π) [hπK(z+) + hKη(z+)] ,

(6.97)
where the functions hij(z) are given in Eq. (A4). A size-
able 27-plet contribution to the DE electric amplitude,
from an enhanced two-pion loop, has been recently iden-
tified (Mertens and Smith, 2011). There is also a local
scale-independent contribution

E
(4)
ct = 2ie

G8M
3
K

F0
(N14 −N15 −N16 −N17) (6.98)

in terms of the LECs in Eq. (2.16). Model-dependent
estimates (D’Ambrosio and Portolés, 1998b; Ecker et al.,
1993) indicate that the vector meson contributions to

E
(4)
ct are suppressed whereas an axial-vector meson ex-

change piece remains. This amplitude could be mea-
sured from the interference with the IB contribution. The
O(p4) magnetic amplitude has a reducible component
from the Wess-Zumino-Witten anomalous Lagrangian in
Eq. (2.15) and a direct non-anomalous contribution from
odd-intrinsic-parity operators in Eq. (2.16):

M (4) = − e

2π2

G8M
3
K

F0

[
1− 16π2 (3N29 −N30)

]
. (6.99)

A factorization estimate of the couplings
(D’Ambrosio and Portolés, 1998b) indicates that

the different contributions are of the same order and
interfere constructively. Some O(p6) analyses were also
performed (D’Ambrosio and Isidori, 1995; Ecker et al.,
1994) but the lack of knowledge on the LECs at this
order makes it difficult to assess their relevance. The
role of form factors induced by vector meson exchange
was also explored (Cappiello and D’Ambrosio, 2007;
D’Ambrosio and Gao, 2000).
The differential cross section is usually written in terms

of T ∗
C , the kinetic energy of the charged pion in the kaon

rest frame, and of W 2 = (q · pK)(q · p+)/(M2
π+M2

K), fac-
torizing the IB contribution (D’Ambrosio et al., 1992),

d2Γ±

dT ∗
c dW

2
=

d2Γ±
IB

dT ∗
c dW

2

[
1 + 2 cos

(
δ11 − δ20 ± φ

)
YEW

2

+
(
Y 2
E + Y 2

M

)
W 4
]
, (6.100)

where Γ+ (Γ−) corresponds to the decay of K+ (K−).
Here φ is a possible CP-violating phase, δIℓ are the strong
rescattering phases for a final ππ state of isospin I and
orbital angular momentum ℓ. YE , YM are the DE elec-
tric and magnetic amplitudes, respectively, normalized
to K± → π±π0. It is usually assumed that YE and YM
are nearly independent of T ∗

c and are therefore constants
over the Dalitz plot. The linear term in W 2 corresponds
to the interference between the amplitudes EDE and EIB.
A recent measurement by NA48/2 (Batley et al., 2010b)
establishes that YM/YE = −11± 3, showing that among
the DE amplitudes the magnetic contribution dominates.
Charge asymmetries in this channel are in-

teresting observables for CP-violating effects
(D’Ambrosio and Isidori, 1998). A bound on the
fully integrated asymmetry δΓ = (Γ+ − Γ−)/(Γ+ + Γ−)
has recently been published (Batley et al., 2010b):
|δΓ| < 1.5 × 10−3 at 90% C.L. translates into
| sinφ| < 0.56. The asymmetry constructed with
the partially integrated decay widths (Colangelo et al.,
1999) is also of interest:

dAW

dW 2
=

dΓ+/dW 2 − dΓ−/dW 2

dΓ+/dW 2 + dΓ−/dW 2
. (6.101)

Batley et al. (2010b) obtain AW = (−0.6± 1.0)× 10−3.

2. KL → π+π−γ

The IB component is proportional to the ampli-
tude for KL → π+π−. Consequently, it violates
CP and it is rather small. Assuming CP invariance,
the dominant contribution is given by the M1 ampli-
tude because E2 is suppressed by phase space. These
features make this decay very suitable to study the
DE magnetic amplitude (D’Ambrosio and Gao, 2000;
D’Ambrosio and Isidori, 1995; D’Ambrosio and Portolés,
1998a; Ecker et al., 1992, 1994; Lin and Valencia, 1988;
Picciotto, 1992).
The leading E2 amplitude arises at O(p4) in CHPT.

There is no local contribution and therefore E2 is given
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KL π0, η, η0

π+

π−

γ
(a) (b)

FIG. 21 Diagram (a) has anomalous and resonance-
dominated contributions to KL → π+π−γ. Diagram (b) gives
a direct weak transition in terms of the couplings in Eq. (2.16).

by a finite one-loop result (D’Ambrosio and Isidori, 1995;
Ecker et al., 1994):

E
(4)
loop = ie

G8MK

8π2F0
(M2

K −M2
π) [hπK(z−) + hKη(z−)

− hπK(z+)− hKη(z+)] , (6.102)

with hij(z) given in Eq. (A4). However, as commented
above, this contribution is even smaller than the CP-

violating IB component: |E(4)
loop/EIB| ∼ 10−2. The 27-plet

contribution to the E2 amplitude has also been deter-
mined (Mertens and Smith, 2011).
The M1 multipole at leading O(p4) is generated by a

constant local contribution (Ecker et al., 1994) in terms
of the LECs in Eq. (2.16):

M (4) = −16 e
G8M

3
K

F0
(N29 +N31) . (6.103)

The magnetic amplitude was also studied at O(p6),
including both local (D’Ambrosio and Portolés, 1998a;
Ecker et al., 1994; Lin and Valencia, 1988) and one-
loop contributions (D’Ambrosio and Portolés, 1998a). A
piece of the local term is completely fixed by the
anomalous WZW Lagrangian in Eq. (2.15), as shown in
Fig. 21a:

M (6)
anom

= e
G8M

3
K

2π2F0
F1(ρ̂, ξ, θ) , (6.104)

in terms of θ, ξ and the mixing angle ρ̂ defined in
Eqs. (6.20), (6.21) and (6.22), where

F1 =
1

1− r2π
+

1

3
(
1− r2η

)
[
(1 + ξ) cos θ + 2

√
2ρ̂ sin θ

]

×
[(

Fπ

Fη8

)3

cos θ −
√
2

(
Fπ

Fη0

)3

sin θ

]

− 1

3(1− r2η′ )

[
2
√
2ρ̂ cos θ − (1 + ξ) sin θ

]

×
[(

Fπ

Fη8

)3

sin θ +
√
2

(
Fπ

Fη0

)3

cos θ

]
. (6.105)

This expression includes higher orders beyond O(p6).
The first z3 dependence comes with resonance dom-

inated local counterterms that depend both on strong

vertices (with a weak transition in the external kaon
leg) and pure weak vertices (D’Ambrosio and Portolés,
1998a). A similar situation arises in the one-loop ampli-

tudeM
(6)
loop =MWZW+MNi

where the first term originates
from the WZW Lagrangian with a weak transition in the
external kaon leg, and the second is determined by ver-
tices of the weak Lagrangian (2.16). Unfortunately, due
to the presence of weak LECs, it is not possible to provide
a model-independent theoretical prediction.
The phenomenological analysis was originally carried

out with only the magnetic amplitude and with a ρ-pole
dominated form factor (Lin and Valencia, 1988):

M = e
G8M

3
K

2π2F0
g̃M1

(
1 +

a1/a2
(M2

ρ −M2
K) + 2M2

Kz3

)
.

(6.106)
Both parameters were determined by Abouzaid et al.

(2006b): |g̃M1 | = 1.20 ± 0.09 and a1/a2 = (−0.738 ±
0.019)GeV2. A model-independent parametrization is
provided by a power series expansion in the variable z3:

M = e
G8M

3
K

2π2F0
gM1 (1 + c z3) . (6.107)

The values obtained from the expression (6.106) corre-
spond to |gM1 | = 1.30 ± 0.12 and c = −1.74 ± 0.08.
It was noticed (Ecker et al., 1994) that the slope is
rather large compared with naive expectations based on
resonance saturation. Indeed, a quadratic approxima-
tion also shows rather large values for both linear and
quadratic slopes (Alavi-Harati et al., 2001e). Although
the value of c can be easily accommodated for a reason-
able range of the parameters involved in the theoretical
analyses (D’Ambrosio and Portolés, 1998a; Ecker et al.,
1994), the predicted photon spectrum is slightly at vari-
ance with the experimental determination. The ratio be-
tween the width due to the DE magnetic amplitude and
the total width was also measured: ΓDE/(ΓDE + ΓIB) =
0.689± 0.021 for Eγ ≥ 20MeV (Abouzaid et al., 2006b).
The full branching ratio is

BR(KL → π+π−γ) = (4.15± 0.15)× 10−5. (6.108)

Both IB and E1 amplitudes are CP violating. It is
usual to parametrize this violation through

|η
+−γ

| eiφ+−γ =
A(KL → π+π−γ)|IB+E1

A(KS → π+π−γ)
,

ǫ′
+−γ

= η+−γ − η+−, (6.109)

where η
+−

is defined in Eq. (5.13). The experimental
determination of these quantities is already rather old
(Matthews et al., 1995; Ramberg et al., 1993): |η

+−γ
| =

(2.36± 0.06)× 10−3, φ+−γ
= (44 ± 0.4)◦ and |ǫ′

+−γ
|/ǫ <

0.3 at 90% C.L., in accordance with SM predictions
(Tandean and Valencia, 2000). More recent is a mea-
surement of the equivalent of the parameter gM1 in
Eq. (6.107) for the amplitude E1, gE1 ; Abouzaid et al.

(2006b) find |gE1 | ≤ 0.21 (90% C.L.).
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3. KS → π+π−γ

Contrary to the KL decay, this channel is dominated
by the IB amplitude because there is no suppression in
the KS → π+π− decay. From the remaining contribu-
tions, M1 and E2 are CP violating. Therefore, the dom-
inant DE amplitude is E1 with a leading contribution of
O(p4). The octet piece (D’Ambrosio and Isidori, 1995;
D’Ambrosio et al., 1993; Mertens and Smith, 2011) con-
tains a scale-independent local amplitude

E
(4)
ct = 4ie

G8M
3
K

F0
[N14 −N15 −N16 −N17] , (6.110)

with the same combination of LECs that appears in
K± → π±π0γ in Eq. (6.98). In addition, there is a finite
one-loop contribution

E
(4)
loop = −ie G8MK

8π2F0
(M2

K −M2
π) [− 4 hππ(−z3)

+ hπK(z+) + hKη(z+) + (z+ ↔ z−)] . (6.111)

The 27-plet amplitude has been determined by
Mertens and Smith (2011). Depending on the unknown
combination of LECs in Eq. (6.110), the ratio of IB
and DE contributions amounts to ΓIB/ΓDE ∼ 103 and
IB therefore dominates the experimental branching ratio
(Nakamura et al., 2010)

BR(KS → π+π−γ, E∗
γ > 50MeV) = (1.79±0.05)×10−3.

(6.112)

4. K → ππℓ+ℓ−

The lepton pair in this decay is produced by an off-
shell photon and in consequence the dynamics is that
of the K → ππγ∗ process. The widths are smaller
than those for a real photon and only the decays
KL,KS → π+π−e+e− have been observed experimen-
tally (Abouzaid et al., 2006a; Lai et al., 2003). This de-
cay provides a useful tool to look for the CP-violating
interference between electric and magnetic amplitudes
because the lepton plane furnishes a measurement of
the photon polarization vector. Bounds on the decays
KL → π0π0ℓ+ℓ− have also been determined for ℓ = e
(Alavi-Harati et al., 2002) and ℓ = µ (Abouzaid et al.,
2011b). As the µ+µ− case is strongly suppressed by the
available phase space, we only consider e+e− production.
The decay amplitude is given by Eqs. (6.95) and (6.96).

A first study of the decay KL → π+π−e+e− with
constant electric and magnetic amplitudes was carried
out by Sehgal and Wanninger (1992), while the calcula-
tion at leading O(p4) of the electric amplitudes (keep-
ing a constant magnetic contribution) was performed in
Elwood et al. (1995). The complete results up to O(p4)
for both KL → π+π−e+e− and K+ → π+π0e+e− can be
found in Pichl (2001).

i. KL → π+π−e+e−

For this decay E2 = −E1(p1 ↔ p2) and we will only
quote the amplitude E1. The leading tree-level con-
tribution to the electric amplitudes is provided by
K0 −K0 mixing with an off-shell photon radiating
off the pion legs. Therefore, it is proportional to
the indirect CP-violation parameter ǫ:

E(2)
1 = −4i e ǫ

G8MKF0

2M2
Kz1 + q2

(M2
K −M2

π). (6.113)

At O(p4) a local scale-dependent contribution
arises,

E(4)
1 ct

= 2i e
G8MK

3F0
q2 [N r

14 −N r
15 − 3(N r

16 −N17)] ,

(6.114)
together with a divergent one-loop amplitude
(Pichl, 2001). At this order, the magnetic ampli-
tude is constant and coincides with the case of a
real photon in Eq. (6.103). In Pichl (2001) the mag-
netic amplitude was modified by including a ρ-pole
parametrization analogous to (6.106).

ii. K+ → π+π0e+e−

For this channel there is no relation between the
two electric amplitudes as in the KL decay. It is in-
teresting to observe that at leading O(p2) the octet
contribution vanishes in the isospin limit and only
the 27-plet representation gives a non-zero contri-
bution (Pichl, 2001). AtO(p4) there are local scale-
dependent amplitudes

E(4)
1ct = −i e G8MK

3F0

[
−6M2

Kz2(N14 −N15 −N16 −N17)

−4q2(N r
14 −N r

15)
]
,

E(4)
2ct = −i e G8MK

3F0

[
6M2

Kz2(N14 −N15 −N16 −N17)

−2q2(N r
14 + 2N r

15) + 6q2(N r
16 −N17)

]
, (6.115)

reducing to the scale-independent result (6.98) for
an on-shell photon. There is also a divergent one-
loop contribution atO(p4). As in the previous case,
the magnetic amplitude is constant and coincides
with the case of a real photon in Eq. (6.99).

The branching ratios of KL and KS decays were mea-
sured by NA48 (Batley et al., 2011b; Lai et al., 2003):

BR(KL → π+π−e+e−) = (3.08± 0.20)× 10−7,

BR(KS → π+π−e+e−) = (4.93± 0.14)× 10−5.

(6.116)

For the KL decay Pichl (2001) studied the impact of
the weak LECs appearing in the amplitudes. However, as
pointed out before, the main interest of this process is the
study of the interference between electric and magnetic
amplitudes provided by the measurement of the photon



44

polarization (Ecker and Pichl, 2001; Elwood et al., 1996;
Heiliger and Sehgal, 1993c; Sehgal and van Leusen,
1999, 2000; Sehgal and Wanninger, 1992). As we have
seen before, the electric amplitude of KL → π+π−e+e−

is generated by the indirect CP-violating mixing of
K0 and K0. Its interference with the CP-conserving
magnetic amplitude produces an asymmetry in the
distribution of the angle φ between the e+e− and π+π−

planes in the kaon center-of-mass system:

ACP =

∫ π/2

0
dΓ
dφ dφ −

∫ π

π/2
dΓ
dφ dφ∫ π/2

0
dΓ
dφ dφ +

∫ π

π/2
dΓ
dφ dφ

. (6.117)

This observable was measured7 by Abouzaid et al.

(2006a) as ACP = (14 ± 2)%. Ecker and Pichl (2001)
observed that the theoretical prediction of ACP with the
leading electric and magnetic amplitudes in Eqs. (6.103)
and (6.113) is short by almost a factor two compared
with experiment. With the inclusion of an energy de-
pendence in the magnetic amplitude along the model in
Eq. (6.106), agreement with the experimental determina-
tion is restored.

G. Other decays

1. K0 → γγγ

The CP-preserving amplitude for this process has
parity-violating and parity-conserving contributions:

A(K0 → γγγ) = ε∗α(q1)ε
∗
β(q2)ε

∗
γ(q3)

(
Mαβγ

PV +Mαβγ
PC

)
.

(6.118)
The first contributes to KL → γγγ while the parity-
conserving amplitude governs KS → γγγ. The Lorentz
structure of both amplitudes is rather complex and can
be found in Heiliger et al. (1994) and Ho and Tandean
(2010). Both amplitudes are strongly suppressed by an-
gular momentum. This is due to the fact that any two
of the three photons in the final state must have J ≥ 2
as a result of gauge invariance and Bose symmetry.
Estimates of the branching ratios have recently been

carried out (Ho and Tandean, 2010) by using naive di-
mensional analysis to predict the order of magnitude of
the LECs in the appropriate chiral Lagrangian of O(p10)
contributing at leading order:

10−16 ≤ BR(KL → γγγ) ≤ 10−14,

10−19 ≤ BR(KS → γγγ) ≤ 10−17. (6.119)

There is a recent experimental upper bound on the first
process (Tung et al., 2011):

BR(KL → γγγ) < 7.4× 10−8 (90% C.L.). (6.120)

7 The analogous asymmetry for the KS decay is compatible with
zero (Batley et al., 2011b).

2. KL → γγℓ+ℓ−

This decay is relevant in order to determine the back-
ground subtraction for KL → π0ℓ+ℓ− (Greenlee, 1990).
Its theoretical description as a bremsstrahlung radiation
off the leptonic legs in the decay KL → γℓ+ℓ− appears to
be in agreement with the experimental branching ratios
(Alavi-Harati et al., 2000a, 2001a):

BR(KL → γγe+e−, E∗
γ > 5 MeV) = (5.8± 0.4)× 10−7,

BR(KL → γγµ+µ−, mγγ > 1 MeV) = (10+8
−6)× 10−9.

(6.121)

3. KL → γνν

This decay exhibits an interesting interplay between
long- and short-distance contributions. Both of them
have been considered (Richardson and Picciotto, 1995):
1) A long-distance amplitude consisting of two pieces,
a weak transition in the KL leg followed by constituent
quark triangle diagrams, and a resonance-dominated am-
plitude; 2) A short-distance contribution given by ds →
γνν. The results obtained within this approach give

BR(KL → γνν)|ld ∼ 10−12,

BR(KL → γνν)|sd ∼ 10−11, (6.122)

showing that the process is short-distance dominated
(Ma and Okada, 1978).
The CP-conserving and CP-violating short-distance

contributions were estimated to be (Geng et al., 2000)

BR(KL → γνν)|CPC = 1.0× 10−13,

BR(KL → γνν)|CPV = 1.5× 10−15, (6.123)

somewhat at odds with the results mentioned above.
Given the small size of these branching ratios, this pro-
cess is a good benchmark to look for effects beyond the
SM (Jiang et al., 2003).

4. KS → ℓ+1 ℓ
−
1 ℓ

+
2 ℓ

−
2

If CP is conserved, these decays proceed via

K0
1 → γ∗γ∗ → ℓ+1 ℓ

−
1 ℓ

+
2 ℓ

−
2 . (6.124)

To leading order, O(G8p
4), only one-loop diagrams with

pions contribute to the amplitudes. The branching ratios
were estimated by Birkfellner (1996):

BR(KS → e+e−e+e−) = 7× 10−11,

BR(KS → e+e−µ+µ−) = 8× 10−12,

BR(KS → µ+µ−µ+µ−) = 1× 10−14. (6.125)

No experimental limits are available.
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5. KL, KS → π0π0γ

The absence of charged particles in these decays im-
plies that they do not have an IB contribution. More-
over, in the CP limit the amplitude for the KL decay
is purely electric and the one of KS is purely magnetic.
In addition, Bose symmetry requires both multipoles to
be even. A consequence of all these features is that the
branching ratios are very small. They have still not been
observed experimentally (Abouzaid et al., 2008c):

BR(KL → π0π0γ) < 2.43× 10−7 (90% C.L.). (6.126)

For the KL decay the leading multipole amplitude
E2 is at least of O(p6), because the O(p4) octet
contributions, both local and loop pieces, vanish
(Funck and Kambor, 1993). The 27-plet contributions
to the O(p4) one-loop amplitude give a tiny addi-
tion (Mertens and Smith, 2011). A naive chiral dimen-
sional estimate of the O(p6) local contributions predicts
BR(KL → π0π0γ) ≃ 10−10 (D’Ambrosio and Isidori,
1995; Ecker et al., 1994; Mertens and Smith, 2011).
However, other estimates predict a larger branching ra-
tio ≃ 10−8 (Heiliger and Sehgal, 1993b). The KS de-
cay has not been studied in detail but it is expected to
give a much smaller branching ratio (Heiliger and Sehgal,
1993b).

6. KL, KS → π0π0γγ

The decay KL → π0π0γγ was studied at leading or-
der in CHPT (Dykstra et al., 1991; Funck and Kambor,
1993). It was found to be dominated by the pion-pole
contribution, showing a strong dependence on the cut on
the photon energies.
The KS decay has no local contribution at O(p4). The

amplitude at this order is therefore given by a finite one-
loop piece (Funck and Kambor, 1993) that provides an
unambiguous prediction:

BR(KS → π0π0γγ, mγγ > 20MeV) = 4.7× 10−9.
(6.127)

There are no experimental bounds for these decays.

7. K → 3πγ

The experimental status of K → 3πγ decays is still
rather meager. Only the two channels with a charged
kaon have been detected experimentally. None of the
decay modes of a neutral kaon have been seen.
Like in many other radiative K decays, there is

both an electric and a magnetic amplitude. The mag-
netic contributions are severely suppressed for all chan-
nels (D’Ambrosio et al., 1997), especially for the ones
where the non-radiative decay amplitudes are dominantly
octet: K+ → π0π0π+γ, K+ → π+π+π−γ and KL →
π+π−π0γ. For these channels, the rates can be predicted

with great accuracy by using the concept of “general-
ized bremsstrahlung” (D’Ambrosio et al., 1996). In this
way, optimal use can be made of available experimen-
tal information on the non-radiative amplitudes. How-
ever, as long as the minimal photon energy Emin

γ is small

(Emin
γ ∼< 40 MeV), the difference between “generalized

bremsstrahlung” and the leading Low contribution (Low,
1958) will not be accessible experimentally in the foresee-
able future. The genuinely radiative contributions (direct
emission) would only matter for large Emin

γ , of course at
the expense of the number of events.

The situation is different for the transition KS →
π+π−π0γ. At lowest chiral order, the amplitude can
only proceed through a ∆I = 3/2 transition (via
bremsstrahlung) and it is therefore suppressed by the
∆I = 1/2 rule. Similarly as for K+ → π+π0γ, the NLO
contributions generated by octet operators become rela-
tively more important. The electric amplitude is domi-
nated by NLO weak LECs, with a large theoretical un-
certainty (D’Ambrosio et al., 1997).
The comparison between theory and experiment is dis-

played in Table VII. For the two charged K decays and
for KL → π+π−π0γ, the theoretical accuracy is only lim-
ited by the precision with which the parameters of the
non-radiative amplitudes are known. The branching ra-
tio for KS → π+π−π0γ has a much larger theoretical un-
certainty. Experimental information on this mode would
therefore be especially interesting, but the expected rate
is unfortunately very small.

VII. CONCLUSIONS AND OUTLOOK

Kaons have been at the center of many ground-
breaking developments in particle physics, which are
worth repeating here. From the introduction of internal
“flavor” quantum numbers (strangeness), to parity vio-
lation, meson-antimeson mixing, quark mixing, CP vi-
olation, and the suppression of flavor-changing neutral
currents, kaon physics has played a key role in the con-
struction of what we now call the Standard Model.
In this review we have summarized the status of the-

oretical predictions for all SM allowed kaon decays with
branching ratios greater than 10−11. Theoretical pre-
dictions rely on the weak operator product expansion to
organize the short-distance dynamics, the renormaliza-
tion group to evolve the relevant operators down to the
hadronic scale, and non-perturbative methods such as
CHPT and lattice QCD to deal with low-energy strong
dynamics. The accuracy of theoretical predictions ranges
from excellent to just fair, depending on whether the de-
cay amplitude is dominated by short- or long-distance
effects. In all cases we have compared theoretical predic-
tions to existing data and we have discussed the impact
of future measurements.
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TABLE VII Comparison between theory (D’Ambrosio et al., 1997) and experiment (Nakamura et al., 2010) for K → 3πγ
decays. The theoretical prediction for BR(KS → π+π−π0γ) depends on NLO weak LECs and is a rough estimate only.

Emin
γ (MeV) BR (theory) BR (PDG’10)

K+ → π0π0π+γ 10 (3.78 ± 0.05) × 10−6 (7.6+6.0
−3.0)× 10−6

K+ → π+π+π−γ 5 (1.26 ± 0.01) × 10−4 (1.04 ± 0.31) × 10−4

KL → π+π−π0γ 10 (1.65 ± 0.03) × 10−4

KS → π+π−π0γ 10 2× 10−10

It is remarkable that to date kaons still provide unique
information on physics at vastly separated energy scales:

• On one hand, kaons are an excellent probe of low-
energy strong interaction dynamics (E ∼ ΛQCD).
While many kaon decays are by themselves a valu-
able testing ground for chiral effective theory tech-
niques, specific modes such as K → ππℓν and
K → πππ allow one to extract reliable informa-
tion on low-energy ππ scattering, thus testing our
understanding of purely strong dynamics.

• On the other hand, kaon decays encode informa-
tion about flavor dynamics at the electroweak scale
E ∼ O(102−3) GeV through their sensitivity to
virtual exchange of heavy SM particles (W , Z, t)
and possibly non-standard particles and their fla-
vor structure. Theoretical predictions for K0 −K0

mixing, short-distance dominated rare decays, and
semileptonic branching ratios have reached a level
of accuracy that already puts very stringent con-
straints on extensions of the SM, in ways often
complementary to other flavor observables and elec-
troweak precision tests. Here we have not dis-
cussed in a systematic way the impact of kaon
decays on extensions of the SM, which can be
found in reviews such as Artuso et al. (2008) and
Antonelli et al. (2010b) in the broader context of
the low-energy/high-intensity frontier.

While by now kaon physics is a mature field, there
are a number of challenges and exciting prospects for
the near future. On the theoretical side the main chal-
lenge will involve improving our control of strong inter-
action effects. We anticipate that in the coming years
lattice QCD (in synergy with CHPT) will play an in-
creasing role in determining the long-distance dynamics
relevant for kaon decays. This will not only increase the
accuracy of predictions for semileptonic modes, but will
also put the SM predictions for nonleptonic decays on
firmer ground, in both cases enhancing the constraining
power of these decays with respect to models of New
Physics. On the experimental side, the world-wide pro-
gram aimed at rare decays will face the challenge of mea-
suring branching ratios at the level of 10−11. This pro-
gram will produce high-statistics results for other chan-

nels as a by-product, and has a great potential to discover
effects of New Physics in the “golden modes” K → πνν̄.
Even in the event of agreement with the SM predictions,
these measurements will provide essential information on
the flavor structure of SM extensions at the TeV scale.
In both scenarios, kaons will play a central role at the
low-energy frontier of our search for physics beyond the
SM.
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Appendix A: One-loop functions

The following functions occur in the one-loop ampli-
tudes for rare and radiative K decays:

F (z) =
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√
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, (A3)

hij(z) =
(4π)2

z

[
C20(p

2, (p+ q)2,M2
i ,M

2
j )

−C20(p
2, p2,M2

i ,M
2
j )
]
, (A4)

with p2 =M2
π (for hπK and hKη) or p

2 =M2
K (for hππ).

C20 is defined by the three-point integrals for q2 = 0:

∫
d4ℓ

(2π)4
ℓµℓν

[ℓ2 −M2
i ][(ℓ+ q)2 −M2

i ][(ℓ − p)2 −M2
j ]

= igµνC20(p
2, (p+ q)2,M2

i ,M
2
j ) + . . . (A5)
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Dubničková, A. Z., S. Dubnička, E. Goudzovski, V. Per-
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